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Binary visible units (observable variables)     , binary hidden units (latent variables)

• Energy function

• Probability distribution
RBMs
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Restricted Boltzmann Machines

Binary visible units (observable variables)     , binary hidden units (latent variables)

• Energy function

• Probability distribution

• Bipartite graph structure implies conditional independence

RBMs
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ℎ1 ℎ2 ℎ3

Bipartite Graphical Model

Independent 

Bernoulli distributions
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• Bipartite graph structure implies conditional independence
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Restricted Boltzmann Machines

Intuition: 

• Observed visible units block the paths among hidden units

• Change of one hidden unit would not affect others

Formally: 𝑥1 𝑥2 𝑥3 𝑥4

ℎ1 ℎ2 ℎ3

RBMs

• Bipartite graph structure implies conditional independence

Why?
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Inference: Computing Marginals           & Maximum A Posterior (MAP) 

 

• MAP is simple for RBMs due to the conditional independence. 

• For computing marginals, we need Markov chain Monte Carlo, e.g., Gibbs sampling

In general, Gibbs sampler draw samples from 

by iteratively sampling from the conditional distributions.

In RBMs, we do not iterative over

individual variables. Instead,

we do block-Gibbs sampling, i.e.,

sampling a block of variables

conditioned on the other block.
𝑥1 𝑥2 𝑥3 𝑥4

ℎ1 ℎ2 ℎ3

RBMs

The block-Gibbs shares the same convergence guarantee as Gibbs (due to conditional independence) but is 

more efficient due to parallel sampling!
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Stochastic Approximated Gradient

Learning: Maximum Likelihood 

Stochastic Approximated Gradient

Monte Carlo Estimation!

Positive Gradient: sample from the data distribution

Negative Gradient: sample from the model distribution

If we use finite-step Gibbs sampler, this method is called Contrastive Divergence (CD) [6]!
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Continuous visible units (observable variables)     , binary hidden units (latent variables)

Energy function:

Continuous Observable and Discrete Latent Variables
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GRBMs: Gaussian-Bernoulli (a.k.a. Gaussian-Binary) Restricted Boltzmann Machines [7]

Continuous visible units (observable variables)     , binary hidden units (latent variables)

Energy function:

Conditional distributions (conditional independence holds again):

Recent work [8] introduces Gibbs-Langevin sampling, which 

makes CD-based learning work much better than before!

GRBMs

v1 v2 v3 𝑣4

h1 h2 h3

Gaussian-Bernoulli Restricted Boltzmann Machines



Results of training GRBMs for modelling MNIST Images [8]

Gaussian-Bernoulli Restricted Boltzmann Machines

Image Credit: [8]



Results of training GRBMs for modelling Fashion-MNIST and CelebA-32 Images [8]

Gaussian-Bernoulli Restricted Boltzmann Machines

Image Credit: [8]
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Deep EBMs

Recall EBMs without latent variables are:

We know energy function design is key to EBMs, e.g., RBM’s energy function implies conditional 

independence.

However, it is typically hard to know how to design energy function in advance.

Why not learn the energy function from data? 

Yes! But there are at least two requirements on the parameterization of the energy function:

• It should be expressive enough to capture the complicated unnormalized probability density of data.

• It should be differentiable to enable CD-based learning.

We already have the answer, i.e., deep neural networks!
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How to parameterize the energy function using deep neural networks?

For image generation, U-Net architecture is crucial [9, 10].

Image Credit: [11]

Recall energy is a scalar, we have

several design choices:

The inner-product version works 

the best empirically [10]!



Deep EBMs

We can also use deep EBMs for supervised learning tasks like classification [13,14]. 

Image Credit: [12]
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Langevin Monte Carlo

Suppose we have a deep EBM over continuous random variables, how can we draw samples from it?

One popular approach is Langevin Monte Carlo [15,16] originated from Langevin Diffusion [17].

This is a stochastic differential equation (SDE), known as Itô diffusion.

One can prove Langevin Diffusion is irreducible, strong Feller, and aperiodic [18].

In other words,             is the stationary distribution of Langevin Diffusion. Therefore, we can use it as a 

Markov chain Monte Carlo sampling method.

standard Brownian motion
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Langevin Monte Carlo

We can construct the Unadjusted Langevin Algorithm (ULA) based on the Euler-Maruyama discretization:

One can also perform Metropolis-Hasting to ensure detailed balance, which implies stationary distribution, 

leading to Metropolis-adjusted Langevin Algorithm (MALA).

But the acceptance probability decreases as the dimension increases, making it impractical in deep learning.

Score function (in ML):
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Learning Deep EBMs

To learn deep EBMs, we still resort to maximum likelihood and contrastive divergence:
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Learning Deep EBMs

Since we care about

We have the gradient:

Positive Gradient: sample from the data distribution

Negative Gradient: sample from the model distribution

We can still use Contrastive Divergence (CD) [6], with Langevin Monte Carlo sampling.



Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:



Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:



Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:

We need score function and derivatives of energy w.r.t. parameters in learning:



Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:

We need score function and derivatives of energy w.r.t. parameters in learning:



Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:

We need score function and derivatives of energy w.r.t. parameters in learning:

They are available as long as the energy function is differentiable!



Image Generation of Deep EBMs

Results on CIFAR10 and LSUN datasets [19] 



Image Completion of Deep EBMs

Results on LSUN and CelebA [19]: 
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