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Outline

• Normalizing Flows and Continuous Normalizing Flows

• The Continuity Equation

• The Fokker Plank Equation

• Flow matching

• Variants:

• Batch Optimal Transport Flow Matching



Normalizing Flows 
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• Our goal with this setup is to learn the transformation from         to the complex data 
distribution        .

Image credit: https://dsl-lab.github.io/blog/2024/flows/
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• Our goal with this setup is to learn the transformation from         to the complex data 
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Normalizing Flows 

5

• Our goal with this setup is to learn the transformation from         to the complex data 
distribution        .

• We can do this by learning the invertible transformation      using neural networks.

•      can contain multiple transformations. Each transformation transforms an input 
distribution into a slightly more complex distribution.

Image credit: https://dsl-lab.github.io/blog/2024/flows/



Normalizing Flows 
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• Starting with known distribution 

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Normalizing Flows 
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• Starting with known distribution 

• Let        be an invertible and differentiable function, 
apply the transformation to   :

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• Consider we have                   , when transforming coordinates from    -space to    -space, 
we are interested in understanding how infinitesimal regions around a point in the original 
space change under the transformation. 

• The function          can be approximated using first-order Taylor expansion:

Normalizing Flows – Multivariate Change of Variable
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• Based on the probability density preservation under transformation, we can have:

Normalizing Flows – Multivariate Change of Variable

9



• Based on the probability density preservation under transformation, we can have:

• The infinitesimal volume transform is (only the linear term matters):

Normalizing Flows – Multivariate Change of Variable
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• Rearrange the equations and we will have:

Normalizing Flows – Multivariate Change of Variable
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Normalizing Flows – Example: Real NVP

• The design of Real NVP model: affine 
coupling layer
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Image credit: https://arxiv.org/pdf/1605.08803



Normalizing Flows – Example: Real NVP

• The design of Real NVP model: affine 
coupling layer

• For the forward mapping:
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Image credit: https://arxiv.org/pdf/1605.08803



Normalizing Flows – Example: Real NVP

• The design of Real NVP model: affine 
coupling layer

• For the forward mapping:

• For the inverse mapping:
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Image credit: https://arxiv.org/pdf/1605.08803



Normalizing Flows – Example: Real NVP

• From the coupling layer, we can easily derive 
the Jacobian:

• It is triangular, which means the determinant is 
the product of the diagonals. The log of 
Jacobian determinants can be simplified as:
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Image credit: https://arxiv.org/pdf/1605.08803



Normalizing Flows 
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• Starting with known distribution 

• Let        be an invertible and differentiable function, 
apply the transformation to   :

• Maximize likelihood of data:

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Normalizing Flows 
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• Starting with known distribution 

• Let        be an invertible and differentiable function, 
apply the transformation to   :

• Maximize likelihood of data:

•                  is the Jacobian of the transformation  

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Continuous Normalizing Flows
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• Continuously normalizing flows are a 
generalization of normalizing flows where the 
transformations are parameterized by 
continuous dynamics governed by an ordinary 
differential equation (ODE).

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• Define the transformation as an ODE

Continuous Normalizing Flows
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Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• Define the transformation as an ODE

• Here                      represents the velocity field of 
the latent variable     as it evolves under a 
continuous transformation

Continuous Normalizing Flows

20
Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Outline

• Normalizing Flows and Continuous Normalizing Flows

• The Continuity Equation

• The Fokker Plank Equation

• Flow matching

• Variants:

• Batch Optimal Transport Flow Matching



• Gauss’s Divergence Theorem: the flux of a vector field through a closed surface equals 
the volume integral of its divergence over the enclosed region.

Continuous Normalizing Flows

22
Image credit: https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem 

Divergence integral over the region RFlux integral through the boundary C

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem


• Gauss’s Divergence Theorem : the flux of a vector field through a closed surface equals 
the volume integral of its divergence over the enclosed region.

Continuous Normalizing Flows
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Image credit: https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem 

Divergence integral over the region RFlux integral through the boundary C

is the density at position

describes the relevant flow

describes how much density flows per unit time in a unit area.

Physical analogy: Think of the flow of fluid mass!

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem


• Consider the law of conservation (the continuity equation):

Continuous Normalizing Flows
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Image credit: https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem 

Flux in over the region R Flux out through the boundary C

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem


• Consider the law of conservation (the continuity equation):

Continuous Normalizing Flows

25
Image credit: https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem 

Flux in over the region R Divergence integral over the region R

Apply Gauss’s Divergence Theorem

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem


• Consider the law of conservation (the continuity equation):

Continuous Normalizing Flows
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Image credit: https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem 

Continuity equation (differential form)

This is due to the fact that the conservation law holds 

for all kinds of regions, densities, and velocity fields!

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/divergence-theorem-articles/a/2d-divergence-theorem


• The continuity equation:

• The continuity equation is a principle of 
conservation in fluid dynamics and other physical 
systems. It states that the change in density over 
time is balanced by the flux of density due to the 
velocity field.

Continuous Normalizing Flows
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Flux in Flux out

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• The continuity equation:

• The divergence symbol       measures the "net 
flow" of a vector field out of a point in space. 

Continuous Normalizing Flows
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Flux in Flux out

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• The continuity equation:

• The divergence symbol       measures the "net 
flow" of a vector field out of a point in space.

• For 

Continuous Normalizing Flows
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Flux in Flux out

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• The continuity equation:

• One property of the divergence operator is the 
product rule:

Continuous Normalizing Flows

30

Flux in Flux out

Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• In CNFs, we transform a simple distribution to a more complex target distribution, and 
the challenge is understanding how the probability density changes during the 
transformation. And this change is governed by the instantaneous change of density.

• Here we use           to denote the flow trajectory.

• Consider the total derivative of 

Continuous Normalizing Flows - Instantaneous change 
of density
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• The continuity equation with the product rule of divergence:

Continuous Normalizing Flows - Instantaneous change 
of density
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• Consider the total derivative of 

• The continuity equation with the product rule of divergence:

• Now, replace the first term with continuity equation, we will have:

Continuous Normalizing Flows - Instantaneous change 
of density

33



• Define the transformation as an ODE

• Instantaneous change of density

Continuous Normalizing Flows

34
Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• Define the transformation as an ODE

• Instantaneous change of density

• Solve the ODE for  

Continuous Normalizing Flows

35
Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



• The ODEs parameterized by neural networks are called Neural ODEs.

• We still adopt maximum likelihood training objective.

Training of the Neural ODEs 
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• Training requires simulation (solving ODE) to obtain exact likelihood

Training of the Neural ODEs 
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• Training requires simulation (solving ODE) to obtain exact likelihood

Training of the Neural ODEs 
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Both need to be numerically solved through ODEs



• Training requires simulation (solving ODE) to obtain exact likelihood

Training of the Neural ODEs 
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• Training requires simulation (solving ODE) to obtain exact likelihood

Training of the Neural ODEs 

40

Trace of Jacobian.

We can use Hutchinson’s trace estimator.



• Training requires simulation (solving ODE) to obtain exact likelihood

• Solving ODEs numerically at each training iteration is slow!

• Gradient computation for backpropagation requires careful handling (adjoint method).

Training of the Neural ODEs 

41



Continuous Normalizing Flows

42



Outline

• Normalizing Flows and Continuous Normalizing Flows
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• The Fokker Plank Equation

• Flow matching

• Variants:

• Batch Optimal Transport Flow Matching



The Fokker Plank Equation

• What happens to the continuity equation if there is stochastic noise?

44
Image credit: Das, "Building Diffusion Model's theory from ground up", ICLR Blogposts, 2024.



The Fokker Plank Equation

• What happens to the continuity equation if there is stochastic noise?

• The ODE now becomes a stochastic differential equation (SDEs).

45

Drift term

(deterministic)

Diffusion term

(stochastic)

Wiener process



The Fokker Plank Equation

• What defines the Wiener process (aka Brownian motion)?

• Its increments are independent Gaussians.

46
Image credit: https://en.wikipedia.org/wiki/Brownian_motion 

https://en.wikipedia.org/wiki/Brownian_motion


The Fokker Plank Equation

• What defines the Wiener process (aka Brownian motion)?

• Increment in infinitesimal time interval is Gaussian.

47



The Fokker Plank Equation

• How does                 change w.r.t. time if       is governed by the SDE?

• This is given by the famous Fokker-Plank equation:

• Also known as the Kolmogorov forward equation.

• The initial distribution at              must be known.

48



The Fokker Plank Equation

• SDEs:

• ODEs:

49



Outline

• Normalizing Flows and Continuous Normalizing Flows

• The Continuity Equation

• The Fokker Plank Equation

• Flow matching

• Variants:

• Batch Optimal Transport Flow Matching



Flow Matching Model

51

• Motivation: Recall the continuity equation, which shows how the probability and the 
velocity field is coupled, since probability density is conserved as it flows through the 
space. 

Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Flow Matching Model

52

• We want to have a loss for this generative model that is differentiable and tractable. Here 
we can try to minimize the distance between the target distribution      and the data 
distribution    by minimizing the KL Divergence:

Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Flow Matching Model

53

• We want to have a loss for this generative model that is differentiable and tractable. Here 
we can try to minimize the distance between the target distribution      and the data 
distribution    by minimizing the KL Divergence:

Need simulation if use 
instantaneous change of variable

Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Flow Matching Model
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• So, revisit the continuity equation, we can observe that based on a known vector field, we 
could know how the density evolves. 

Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Flow Matching Model
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• Therefore, instead of directly optimizing the probability density path, we can optimize the 
vector field.



Flow Matching Model
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• Therefore, instead of directly optimizing the probability density path, we can optimize the 
vector field.

• However, we still cannot compute this loss because we don’t know       or      .



Flow Matching Model
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• We need to find a tractable loss.

• Assume we have samples from data distribution          , construct conditional probability 
paths                 , and marginalize the probability over data distribution:



Flow Matching Model
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• We need to find a tractable loss.

• Assume we have samples from data distribution          , construct conditional probability 
paths                 , and marginalize the probability over data distribution:

• The conditional vector field is                  and the marginal vector field is:



Flow Matching Model

59



Flow Matching Model

60

• The conditional flow matching loss: 

• Performing regression on conditional velocities has the same gradient as the flow 
matching loss.



Flow Matching Model

61Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Flow Matching Model

• The conditional flow based on the conditional vector field is:

62



Flow Matching Model

• The conditional flow based on the conditional vector field is:

• Simply, let                                                          and

   , where                                                                                             . Here we introduce      
to mimic            without losing smoothness when    is close to 1.
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Flow Matching Model
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• Specifically, the mean and standard deviation change linearly with time:



Flow Matching Model
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• Specifically, the mean and standard deviation change linearly with time:

• This gives a straight path:



Flow Matching Model
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• The conditional flow with optimal transport is:



Flow Matching Model

67

• The conditional flow with optimal transport is:

• The reparametrized conditional flow matching loss is:



Flow Matching Model

68Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view ,

https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Flow Matching Model vs. Diffusion Model

69Image credit: Lecture slides by Yaron Lipman, https://drive.google.com/file/d/1Dkl_NEo1YpoDByxJLuNbqqA493-4NdCY/view



Outline

• Normalizing Flows and Continuous Normalizing Flows

• The Continuity Equation

• The Fokker Plank Equation

• Flow matching

• Variants:

• Batch Optimal Transport Flow Matching



Mini Batch OT Flow Matching Model

71Image credit: Tong, Alexander, et al. "Improving and generalizing flow-based generative models with minibatch optimal transport." Transactions on Machine 

Learning Research.

• Paths of various flow matching model design

• Vanilla Conditional Flow Matching: Each conditional path is straight, but some paths intersect.

• OT Conditional Flow Matching: Within the mini-batch, all paths are assigned as non-intersecting straight 
lines.



Mini Batch OT Flow Matching Model

72
Image credit: https://indico.cern.ch/event/1425234/contributions/5994520/attachments/2872760/5030185/slides.pdf



Questions?

73
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