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Outline

* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Motivating Applications for Sets

* Population Statistics
* Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets
https://github.com/AnTao97/PointCloudDatasets
https://github.com/AnTao97/PointCloudDatasets
https://github.com/AnTao97/PointCloudDatasets

Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = flg(X))
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Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

* Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation
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Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

» Data => Toeplitz matrix



Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

* Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator

Shift operator is also a circulant matrix!

< |

S ST ST

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

12



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Invariance

Global pooling gives you shift-invariance!

224 x 224 x3 224 x 224 x 64

28x28x5121
4096 1x1x1000

@ convolution+ReLLU

@ max pooling
f l’ fully connected+ReLU

f I softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
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Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:

E 0 Ml el

ST | LeNet 5 | peseance
answer: 0

I
Iy

:

TArWEs B2
I [ | e
:': . :E| i

.’;'1 ?
3}
]
Ly
>
r
E: -
C
Y
J

<k K

Image Credit: http://yann.lecun.com/exdb/lenet/translation.html
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Outline

* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle
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Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P eR""|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix



Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P eR""|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S n



Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P eR""|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S n

Image Credit: https://arxiv.org/pdf/1710.09508. pdf
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Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Y = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds
Probability of Classes
Permutation / Shuftle

Point Representations

H = f(X)
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds X € R"X3

Probability of Classes Y € Rl X K

Permutation / Shuffle P € RT*AT

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation / Shuffle P € RT*AT

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)
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More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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* Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https:/pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification



Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

* Set-level Tasks
Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification



Deep Learning for Sets

Key Challenges:

* Varying-sized input sets
* Permutation equivariant and mvariant models

* Expressive models



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in [0) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of er x ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in ) from er x o(z).

1. Construct a mapping c:|1X|l— N Countable Universe

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in [0) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of rex ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in Q) from er x o(z).

1. Construct a mapping c: X —> N

2. Let gb(x) = 4_C(x)

3. Injection X € X _ Z ¢(x)
xeX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in [0) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of rex ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in ) from er x o(z).

1. Construct a mapping c: X —> N
2. Let o(z) = 47¢®)
3. Injection X E% Z Q5(33) Power Set

reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in [0) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of rex ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in ) from er x o(z).

[1. Construct a mapping c: X —> N \
Why base 47
2. Let o(z) = 47
3. Injection X € X _ Z ¢(x)

\_ reX -/

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

41



Deep Learning for Sets

Necessity:

/1. Construct a mapping
2. Let

3. Injection

.

c: X —>N
o(x) = 47

Xe2v = > ¢x)

reX

\

/

For better illustrate the problem, let us switch to base 2, i.e., Qﬁ(ﬂ?) =2

e(z)

Why base 47

42



Deep Learning for Sets

Necessity:

/1. Construct a mapping
2. Let

3. Injection

.

c: X —>N
(o) = 47

Xe2v = > ¢x)

reX

\

/

For better illustrate the problem, let us switch to base 2, i.e., Qﬁ(ﬂ?) =2

e(z)

Why base 47

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.
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Deep Learning for Sets

Necessity:
(1. Construct a mapping c: X —>N ) Why base 47
2. Let o(x) = 47@)
3. Injection X ¢ 2% Z o(z)

\ reX /

For better illustrate the problem, let us switch to base 2, i.e., ¢(£U ) — 2—0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is ‘%‘
b1 [i]

1
Then the size—‘%‘ binary string of set X1 = {1} 1S bl = 10... andits binary expansion is Z ¢(z) = Z 9i 9 0.5
reXy 1=1

44



Deep Learning for Sets

Necessity:

fl. Construct a mapping
2. Let

3. Injection

-

c: X —>N

o(x) = 47
Xe2t 5 > ¢

™\ Why base 47

reX /

For better illustrate the problem, let us switch to base 2, i.e., ¢(£U ) — 2—0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is ‘%‘

Then the size—‘%‘ binary string of set X1 = {1} 1S bl =10...

Then the binary string of set Xo = {2, 3, ce

}isbgz()ll...

and its binary expansion is Z oz
ZE‘GXl

and its binary expansion is Z (x
€ Xs

=1

=1

0.5



Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X —>N \ Why base 47
2. Let o(x) = 47@)
3. Injection X ¢ 2% Z o(x

\_ reX -/

For better illustrate the problem, let us switch to base 2, i.e., ¢(£U ) — 2—0(33)'

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.
For example, suppose X = {1, 2, c e } and the size is ‘%‘

Then the size—‘x ‘ binary string of set X1 = {1} 1S bl = 10... andits binary expansion is Z oz

rzeXy 1=1
Then the binary string of set X2 = {2, 3, e } is bo =011... andits binary expansion is Z ¢(x
€ Xs 1=1

Dyadic rationals do not have unique binary expansions!




Deep Learning for Sets

Suppose we use base B, where B > 1. the value of a tail of a geometric series starting from index n+1 is:

e B—i B—(n+1) B—(n+1) 1
Z - 1-B7' Bl pn(B-1)

1=n-+1 B




Deep Learning for Sets

Suppose we use base B, where B > 1. the value of a tail of a geometric series starting from index n+1 is:

e . B—(n+1) B—(n+1) 1
2. B =i = e ~ B*(B-1)
1=n-+1 B

We want to ensure that even if a set X contains every single element from index n+1 onwards, its sum still cannot "reach"
the value of the n-th element alone. This requires:




Deep Learning for Sets

Suppose we use base B, where B > 1. the value of a tail of a geometric series starting from index n+1 is:

e . B—(n+1) B—(n+1) 1
2. B =i = e ~ B*(B-1)
1=n-+1 B

We want to ensure that even if a set X contains every single element from index n+1 onwards, its sum still cannot "reach"
the value of the n-th element alone. This requires:

gb(:ljn) > Z (b(:l?z)
1=n—+1
n 1
B> o
1

If we simplify this inequality, we get: 1 > — B—-1>1 = B >2

B -1

Therefore, any base greater than 2 works!



Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture

":Optional

i conditioning

i based on meta-
..:information

B

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Outline

* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © ¢ RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMvyER 1=[1,...,1]" eRM I ¢ RM*M s the identity matrix

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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* Deep Sets [1] fo(x) = o(0x) © ¢ RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMvyER 1=[1,...,1]" eRM I ¢ RM*M s the identity matrix
Sketch of Proof

Permutation Equivariance 0(O7X) = mo(Ox) (w. element-wise nonlinearity) reduces to TOX = O1X

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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* Deep Sets [1] fo(x) = o(0x) © ¢ RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMvyER 1=[1,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof

Permutation Equivariance 0(O7X) = mo(Ox) (w. element-wise nonlinearity) reduces to TOX = O1X

Sufficiency: © is commutable with permutation matrix

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © ¢ RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMvyER 1=[1,...,1]" eRM I ¢ RM*M s the identity matrix
Sketch of Proof

Permutation Equivariance 0(O7X) = mo(Ox) (w. element-wise nonlinearity) reduces to TOX = O1X

Sufficiency: © is commutable with permutation matrix

. . . . . > T —1
Necessity: consider a special permutation (i.e., transposition / swap) 70 0] — T j — Tj.4

1. All diagonal elements are identical
Tei©® =0Om,; = T 0m =0 = (m,0m k)11 =011 = O =0,

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © ¢ RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMvyER 1=[1,...,1]" eRM I ¢ RM*M s the identity matrix
Sketch of Proof
Permutation Equivariance 0(O7X) = mo(Ox) (w. element-wise nonlinearity) reduces to TOX = Onx

Sufficiency: © is commutable with permutation matrix

. . . . . > T —1
Necessity: consider a special permutation (i.e., transposition / swap) 70 0] — T j — Tj.4

1. All diagonal elements are identical
Tei©® =0Om,; = T 0m =0 = (m,0m k)11 =011 = O =0,

2. All off-diagonal elements are identical
Wj/,jﬂi,i/@ = @Wj/,jﬂz',z‘/ = 7Tj/,j7Tz‘77;f@(7Tj/,j7Ti,z‘/)—1 =0 =
7Tj/,j7Ti7if@7Ti/,i7Tj’j/ =0 = (7Tj/,j7T7;77;/@Wi/,f;ﬂj,j/)fg7j = ®i,j = ®i’,j’ = @i,j

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) = O'(XA — 11TXI‘)

“:Opﬁonal

+ conditioning

i based on meta-
'.: information

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

i Optional

i conditioning

! based on meta-
;infonnation

g

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Outline

* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Deep Learning for Sequences

* Language Models

P(xtD] 2®  z) the students opened their

Image Credit: http://web.stanford.edu/class/cs224n/

books

/ / laptops

\\" exams

minds
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Deep Learning for Sequences

* Language Models

books
/ laptops
P(w(t+1)\ z® .. :13(1)) the students opened their /
\\\‘ exams
minds

 Machine Translation

_ L ? % THE
~ S z —_— —_—
o sl ediant O" TRANSFORMER I am a student

Image Credit: http://web.stanford.edu/class/cs224n/ https://jalammar.github.io/illustrated-transformer/
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences



Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be

a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

» Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

» Complex statistical dependencies (e.g. long-range ones)

LSTM [1]
GRU [2]

As aliens entered our planet Seq2 Seq [3 ]
Transformer [4]

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
[1] Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997). [2] Cho, Kyunghyun. "Learning phrase representations using RNN encoder-decoder for statistical machine

translation." arXiv preprint arXiv:1406.1078 (2014). [3] Sutskever, I. "Sequence to Sequence Learning with Neural Networks." arXiv preprint arXiv:1409.3215 (2014). [4] Vaswani, A.6"Attention is
all you need." Advances in Neural Information Processing Systems (2017).
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Outline

* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
* Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers
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Image Credit: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
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Absolute vs. Relative Positional Encoding

Encode relative position information could help better model the dependency among tokens.

How to encode relative positions?
* We can inject the relative position into the bias of attention.
* We can use Rotary Position Embedding (RoPE) [1], which is more effective empirically.

To understand RoPE, let us recap how to rotate a 2D vector:

T cosmf —sinmb| |z,

Th sinmf  cosmb | |xo

\ . J/
V

RQ,m

Rotation matrix is orthogonal and preserves the norm!

[1] Sy, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).



Rotary Positional Embedding

RoPE first divide d-dimension vector space in d/2 subspaces and then rotate them based on the position:

[cosmbf; —sinmby 0 0 0 0
sinmf;  cosmby 0 0 0 0
EA 0 0 cosmbs — sin mbsy 0 0 B3
| = 0 0 sinmfs  cosmb- 0 0
leil_ . _:de
0 0 0 0 cosmbye  —sinmbg /o
0 0 0 0 o+ sinmbge cosmbgs
RS

Here © = {6; = 10000~20-V/4 j 1,2, ....d/2]}

In practice, we can apply 2D rotations to pairs (CUl, CUl-|-al/2)a (3727 5172-|—d/2)7 ceey (xd/% xd)




Rotary Positional Embedding

RoPE first divide d-dimension vector space in d/2 subspaces and then rotate them based on the position:
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Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).



Rotary Positional Embedding

What do we gain in RoPE?

* Inner product depends on the relative position
Let us look at the case of 2D:

{
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Rotary Positional Embedding

What do we gain in RoPE?
* Inner product depends on the relative position This holds for d-dimension as we
Let us look at the case of 2D: construct a block-diagonal matrix
, , : : with 2D rotation matrices!
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Rotary Positional Embedding

What do we gain in RoPE?
* Long-term decay of inner product w.r.t. relative positions

relative upper bound

20 -
18
16
14
12

10

50 100 150 200 250

Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

relative distance
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[1] Kitaev, Nikita, tukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." arXiv preprint arXiv:2001.04451 (2020). Image Credit: Vaswani, A. "Attention is all you@eed."
Advances in Neural Information Processing Systems (2017).



Flash Attention [ 1]

Flash attention accelerates attention by using on-chip static random-access memory (SRAM, small
memory but fast) to reduce the IO with high bandwidth memory (HBM, large memory but slow).

Standard Attention Implementation

Flash Attention

Load
Q. K Load
ﬁ
. S=QK
Write S Load Kernel operations fused
€ Q.0.L.m together, reducing
[ I reads & writes
Load S >
Memory _) P = softmax(s Memory T
= S=QK
(HBM) Compute (s) (HBM) Compute i Qi i ‘e
m = rowmax o
Write P
E rite P =exp(s - m)
L = rowsum of P
_ m = max(m_, m)
Load P,V O =PV Write O; L.v. calculate O lfrom L&m
ﬁ _
Write O
_

Initialize O, | and m matrices with zeroes. m and | are used to calculate

cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits)

and iterate over them, for i is row & j is column.
[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 (2022): 16344-16359. Imagé Credit:
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention
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* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Pre-Norm vs. Post-Norm

X
Where to place the Layer Normalization? IF '

Layer Norm

addition

FFN

'

Layer Norm

—>

addition

o

X1

Multi-Head
Attention

Post-Norm

Xl+1
addition
ry
FFN
Layer Norm
addition
A \
Multi-Head
Attention
Layer Norm
X1
Pre-Norm
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Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.



Pre-Norm vs. Post-Norm

L. X1+1 X1+1
Where to place the Layer Normalization? t T
Layes Norm addition
A
* Gradient norm 1n the Post-Norm addition —
. F 3
Transformer is large for parameters 1
near the output and will be likely to FFN Layer Norm
decay as the layer gets closer to input / /I
Layer Norm addition
T A \
addition Multi-Head
1 \ Attention
Multi-Head T
Attention Layer Norm
X1 X1
Post-Norm Pre-Norm
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Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.



Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

* Gradient norm in the Post-Norm
Transformer is large for parameters
near the output and will be likely to
decay as the layer gets closer to input

* Training the Pre-Norm Transformer
does not rely on the learning rate
warm-up stage and can be trained
much faster than the Post-Norm

X1+1

t

Layer Norm

addition

A

FFN
Layer Norm
addition
-~ ;
Multi-Head
Attention

X1

Post-Norm

X1+1
addition
ry
FFN
Layer Norm
addition
A \
Multi-Head
Attention
Layer Norm

X1

Pre-Norm

Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.
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* Invariance & Equivariance Principle
* Translation equivariance in convolutions
* Permutation equivariance and invariance

 Models for Sets

* DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
e Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
* Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Extensions: Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020. Image Cpédit:
https://github.com/Iucidrains/vit-pytorch
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Extensions: Swin Transformers [1]

Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity

[1] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. Image(@redit:
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c



https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformers

Standard MSA Window-based MSA

Attention for each patch is computed against all patches, Attention for each patch is only computed within its own window (drawn in red).
resulting in quadratic complexity Window size is 2x2 in this example.

109
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transtformers

Window-based MSA Shifted Window MSA

Attention for each patch is only computed within its own window {drawn in red).

SHidaw; St281=2X3 In iRl Step 1: Shift window by a factor of M/2, where M = window size

110
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transtformers

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted
windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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Extensions: Swin Transformers
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Image Credit: Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference oncomputer vision. 2021.
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