

EECE 571F: Advanced Topics in Deep Learning

Lecture 2: Invariance, Equivariance, and Deep Learning Models for Sets/Sequences

Renjie Liao

University of British Columbia

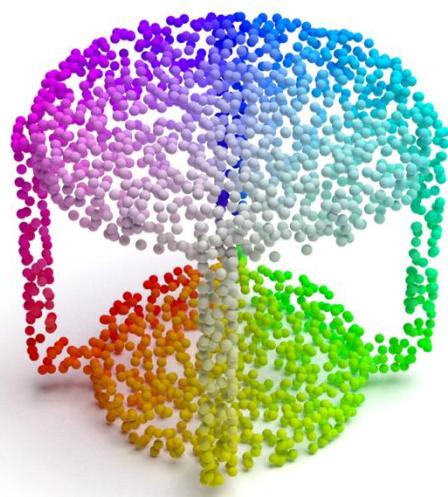
Winter, Term 2, 2025

Outline

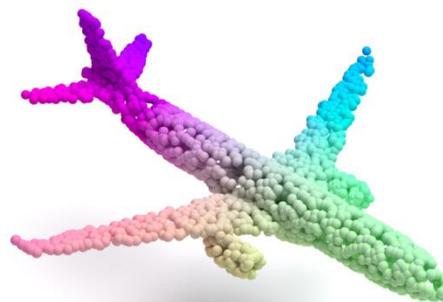
- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Motivating Applications for Sets

- Population Statistics
- Point Cloud Classification



Table



Airplane

Earphone

Invariance & Equivariance

- Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

Invariance & Equivariance

- Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

Invariance & Equivariance

- Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

- Equivariance:

Applying a transformation and then computing the function produces the same result as computing the function and then applying the transformation

$$g(f(X)) = f(g(X))$$

Outline

- Invariance & Equivariance Principle
 - **Translation equivariance in convolutions**
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Revisit Convolution

Matrix multiplication views of (discrete) convolution:

- Filter => Toeplitz matrix
- Data => Toeplitz matrix

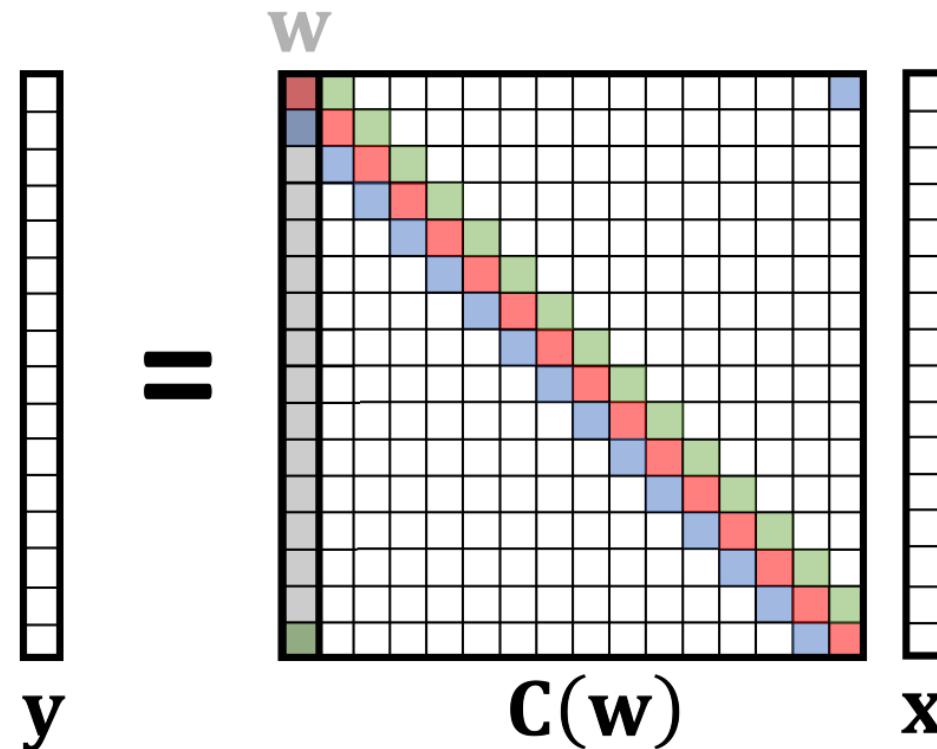
Revisit Convolution

Matrix multiplication views of (discrete) convolution:

- Filter => Toeplitz matrix
- Data => Toeplitz matrix

Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding



Translation/Shift Operator

$$\mathbf{y} = \mathbf{S}\mathbf{x}$$

$$\mathbf{y} = \mathbf{S}^T \mathbf{x}$$

$$\begin{array}{c}
 \begin{array}{ccccc}
 \text{S} & & \text{S}^T & & \text{S}^T \\
 \begin{array}{|c|c|c|c|c|} \hline
 \text{S} & & \text{S}^T & & \text{S}^T \\
 \hline
 \end{array} & \begin{array}{c} = \end{array} & \begin{array}{|c|c|c|c|c|} \hline
 \text{S}^T & & \text{S} & & \text{S} \\
 \hline
 \end{array} & \begin{array}{c} = \end{array} & \begin{array}{|c|c|c|c|c|} \hline
 \text{S}^T & & \text{S} & & \text{S} \\
 \hline
 \end{array} \\
 \end{array}
 \end{array}$$

Translation/Shift Operator

Shift operator is also a circulant matrix!

$$\mathbf{y} = \mathbf{S}\mathbf{x}$$

$$\mathbf{y} = \mathbf{S}^T \mathbf{x}$$

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

$$\mathbf{C}(\mathbf{w}) \mathbf{S}^T = \mathbf{S}^T \mathbf{C}(\mathbf{w})$$

shift operator

shift operator

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

The diagram shows the commutativity of convolution with shift operator for circulant matrices. It consists of four 8x8 grids arranged in a 2x2 pattern. The left column contains two grids: the top one is labeled $C(w)$ and the bottom one is labeled S^T shift operator. The right column contains two grids: the top one is labeled S^T shift operator and the bottom one is labeled $C(w)$. A horizontal double equals sign is positioned between the two columns, indicating that the order of operations does not matter for circulant matrices.

$C(w)$

S^T

shift operator

S^T

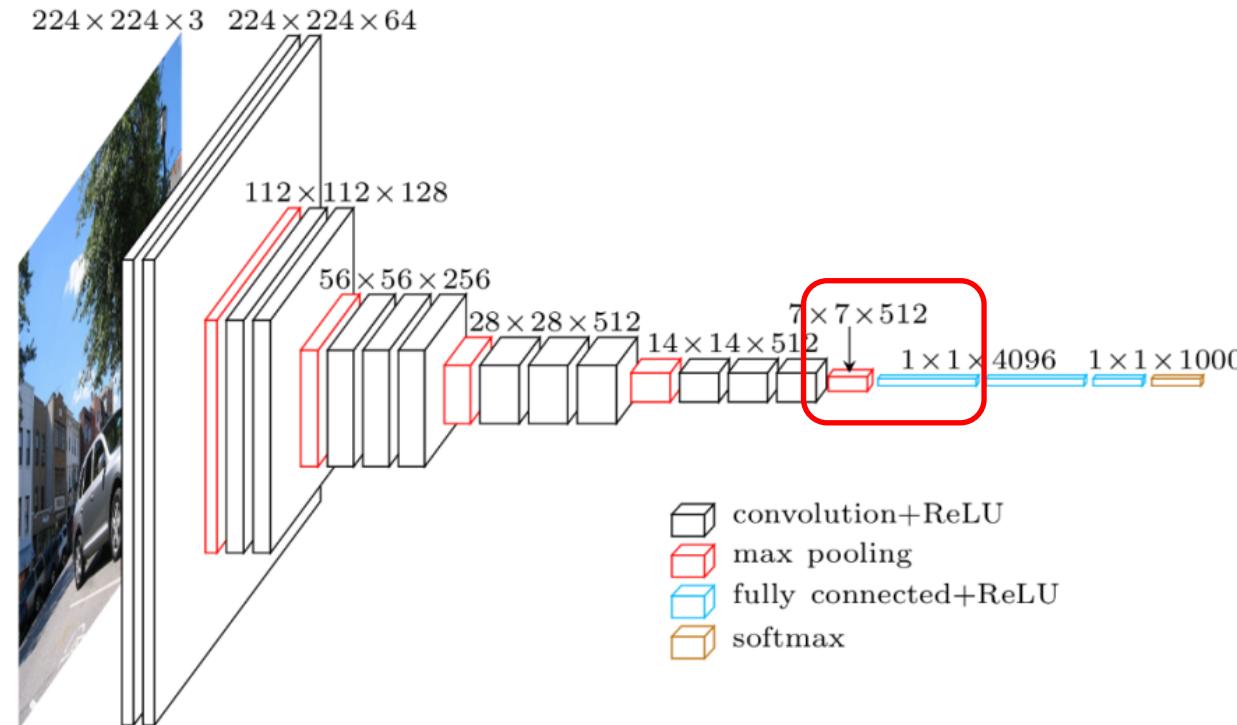
shift operator

$C(w)$

Convolution is translation equivariant, i.e., $\text{Conv}(\text{Shift}(X)) = \text{Shift}(\text{Conv}(X))$!

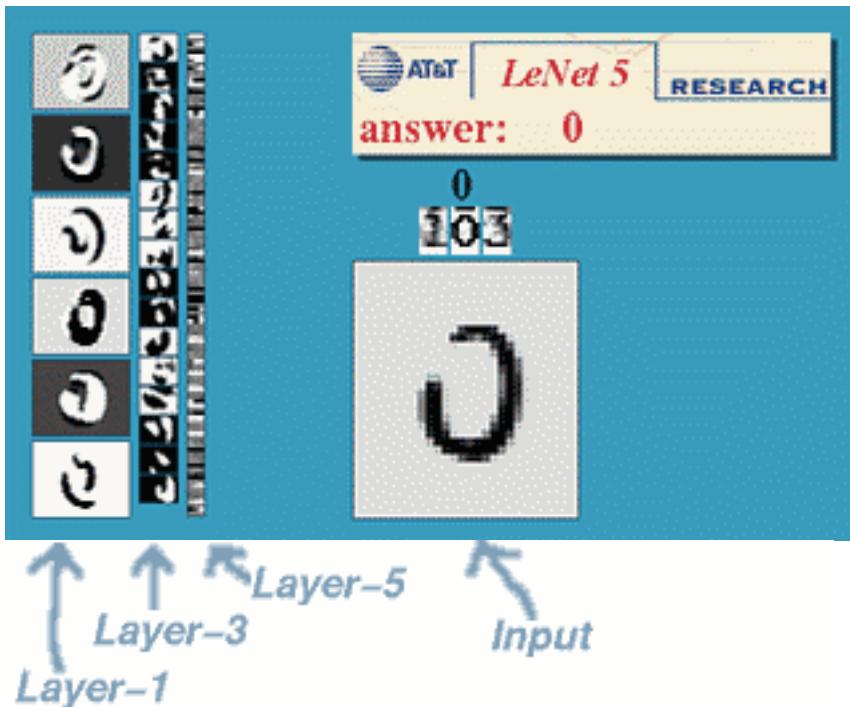
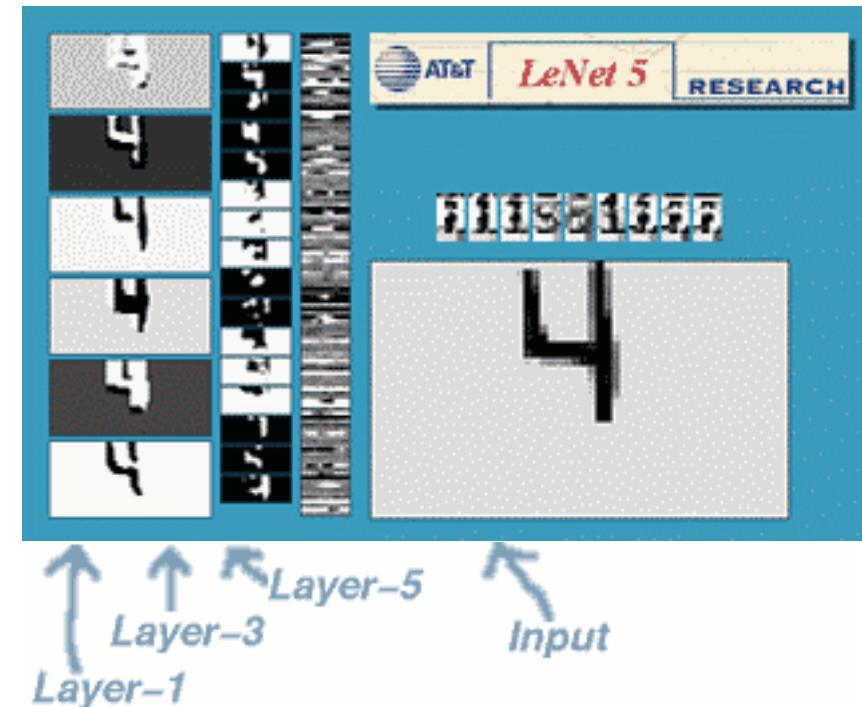
Translation/Shift Invariance

Global pooling gives you shift-invariance!



Translation/Shift Equivariance Invariance

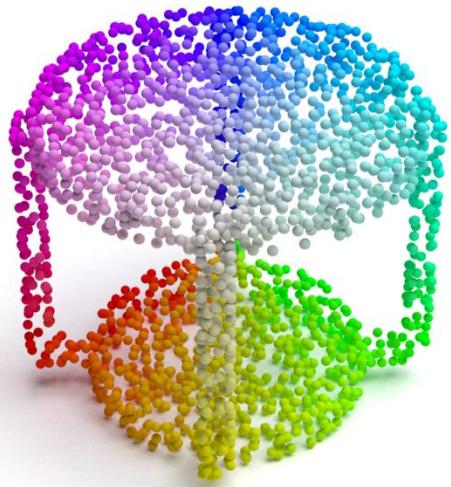
Yann LeCun's LeNet Demo:



Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - **Permutation equivariance and invariance**
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Permutation Invariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

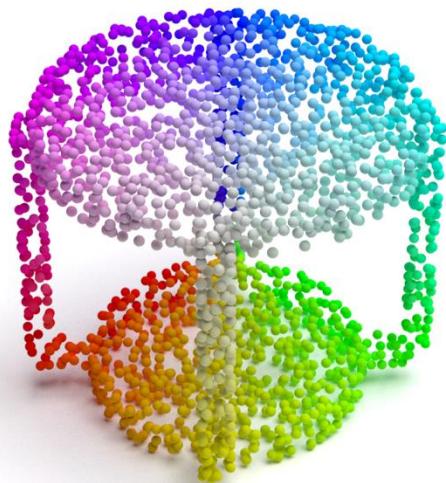
Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

Permutation Invariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

$$\begin{bmatrix} 2 \\ 5 \\ 3 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

$$B_n = \{P \in \mathbb{R}^{n \times n} \mid \forall i \forall j \ P_{ij} \geq 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1\}$$

Doubly Stochastic Matrix

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

$$B_n = \{P \in \mathbb{R}^{n \times n} \mid \forall i \forall j \ P_{ij} \geq 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1\}$$

Doubly Stochastic Matrix

Birkhoff–von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices
2. Permutation matrices = Vertices of Birkhoff Polytope S_n

Geometric Interpretation of Permutation Matrix

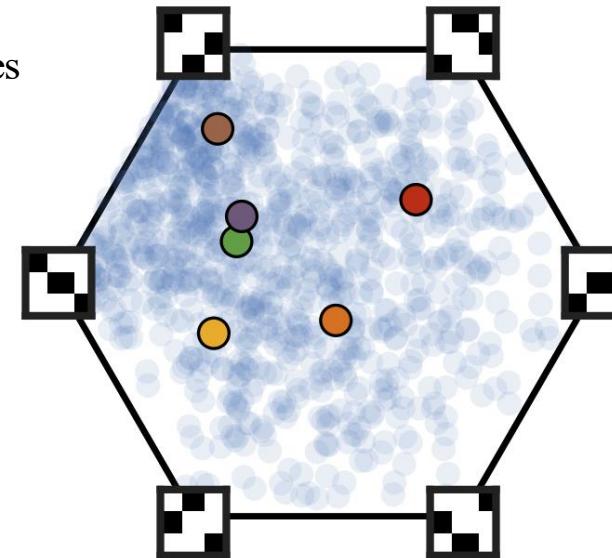
Birkhoff Polytope

$$B_n = \{P \in \mathbb{R}^{n \times n} \mid \forall i \forall j \ P_{ij} \geq 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1\}$$

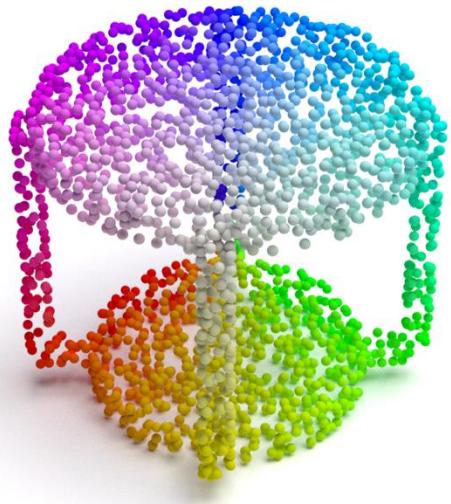
Doubly Stochastic Matrix

Birkhoff–von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices
2. Permutation matrices = Vertices of Birkhoff Polytope S_n



Permutation Invariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

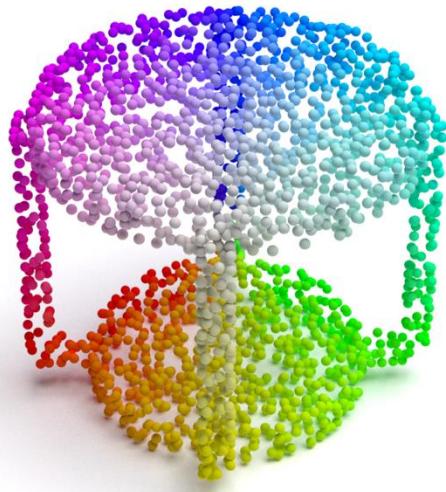
$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

$$Y = f(PX) \quad \forall P \in S_n$$

Permutation Equivariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

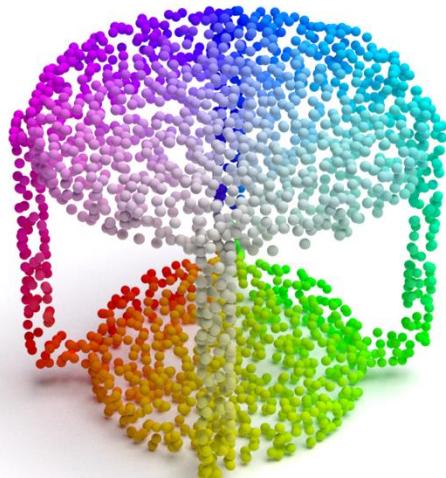
Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

Point Representations

$$H \in \mathbb{R}^{n \times d}$$

Permutation Equivariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

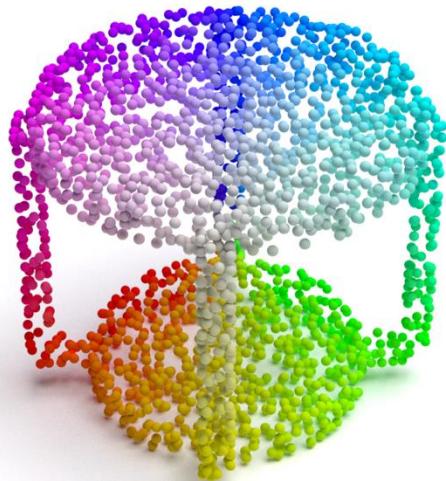
$$P \in \mathbb{R}^{n \times n}$$

Point Representations

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

Permutation Equivariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

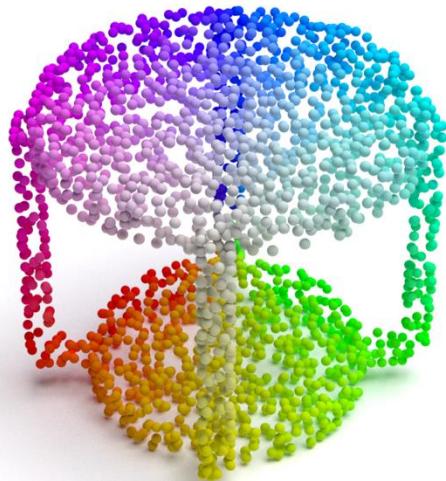
Point Representations

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

$$PH = Pf(X) = f(PX)$$

Permutation Equivariance



Table

Point Clouds

$$X \in \mathbb{R}^{n \times 3}$$

Probability of Classes

$$Y \in \mathbb{R}^{1 \times K}$$

Permutation / Shuffle

$$P \in \mathbb{R}^{n \times n}$$

Point Representations

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

$$PH = Pf(X) = f(PX)$$

More on Invariance & Equivariance

- What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

More on Invariance & Equivariance

- What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

- Generalize to Group Invariance & Equivariance

Recommend Taco Cohen's PhD Thesis: <https://pure.uva.nl/ws/files/60770359/Thesis.pdf>

Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - **DeepSets: representation theorem of permutation-invariant set functions & architecture**
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sets

- Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

Deep Learning for Sets

- Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

- Set-level Tasks

Input: a set of vectors, each corresponds to a point

Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification

Deep Learning for Sets

Key Challenges:

- Varying-sized input sets
- Permutation equivariant and invariant models
- Expressive models

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

Countable Universe

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping $c : \mathfrak{X} \rightarrow \mathbb{N}$
2. Let $\phi(x) = 4^{-c(x)}$
3. Injection $X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in \boxed{2^{\mathfrak{X}}} \rightarrow \sum_{x \in X} \phi(x)$$

Power Set

Deep Learning for Sets

- Deep Sets [1]

Theorem 2 *A function $f(X)$ operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X , iff it can be decomposed in the form $\rho \left(\sum_{x \in X} \phi(x) \right)$, for suitable transformations ϕ and ρ .*

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ρ) that takes an injective representation of a set as input. Then we just need to construct an injective set representation in the form of $\sum_{x \in X} \phi(x)$ since any other injective set representations can be obtained via some suitable transformation (absorbed in ρ) from $\sum_{x \in X} \phi(x)$.

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

Deep Learning for Sets

Necessity:

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

For better illustrate the problem, let us switch to base 2, i.e., $\phi(x) = 2^{-c(x)}$.

Deep Learning for Sets

Necessity:

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

For better illustrate the problem, let us switch to base 2, i.e., $\phi(x) = 2^{-c(x)}$.

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

Deep Learning for Sets

Necessity:

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

For better illustrate the problem, let us switch to base 2, i.e., $\phi(x) = 2^{-c(x)}$.

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose $\mathfrak{X} = \{1, 2, \dots\}$ and the size is $|\mathfrak{X}|$

Then the size- $|\mathfrak{X}|$ binary string of set $X_1 = \{1\}$ is $b_1 = 10\dots$ and its binary expansion is $\sum_{x \in X_1} \phi(x) = \sum_{i=1} b_1[i] \frac{1}{2^i} = \frac{1}{2} = 0.5$

Deep Learning for Sets

Necessity:

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

For better illustrate the problem, let us switch to base 2, i.e., $\phi(x) = 2^{-c(x)}$.

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose $\mathfrak{X} = \{1, 2, \dots\}$ and the size is $|\mathfrak{X}|$

Then the size- $|\mathfrak{X}|$ binary string of set $X_1 = \{1\}$ is $b_1 = 10\dots$ and its binary expansion is $\sum_{x \in X_1} \phi(x) = \sum_{i=1}^{\infty} \frac{b_1[i]}{2^i} = \frac{1}{2} = 0.5$

Then the binary string of set $X_2 = \{2, 3, \dots\}$ is $b_2 = 011\dots$ and its binary expansion is $\sum_{x \in X_2} \phi(x) = \sum_{i=1}^{\infty} \frac{b_2[i]}{2^i} = \sum_{i=2}^{\infty} \frac{1}{2^i} = 0.5$

Deep Learning for Sets

Necessity:

1. Construct a mapping

$$c : \mathfrak{X} \rightarrow \mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

3. Injection

$$X \in 2^{\mathfrak{X}} \rightarrow \sum_{x \in X} \phi(x)$$

Why base 4?

For better illustrate the problem, let us switch to base 2, i.e., $\phi(x) = 2^{-c(x)}$.

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose $\mathfrak{X} = \{1, 2, \dots\}$ and the size is $|\mathfrak{X}|$

Then the size- $|\mathfrak{X}|$ binary string of set $X_1 = \{1\}$ is $b_1 = 10\dots$ and its binary expansion is $\sum_{x \in X_1} \phi(x) = \sum_{i=1}^{\infty} \frac{b_1[i]}{2^i} = \frac{1}{2} = 0.5$

Then the binary string of set $X_2 = \{2, 3, \dots\}$ is $b_2 = 011\dots$ and its binary expansion is $\sum_{x \in X_2} \phi(x) = \sum_{i=1}^{\infty} \frac{b_2[i]}{2^i} = \sum_{i=2}^{\infty} \frac{1}{2^i} = 0.5$

Dyadic rationals do not have unique binary expansions!

Deep Learning for Sets

Suppose we use base B , where $B > 1$. the value of a tail of a geometric series starting from index $n+1$ is:

$$\sum_{i=n+1}^{\infty} B^{-i} = \frac{B^{-(n+1)}}{1 - B^{-1}} = \frac{B^{-(n+1)}}{\frac{B-1}{B}} = \frac{1}{B^n(B-1)}$$

Deep Learning for Sets

Suppose we use base B , where $B > 1$. the value of a tail of a geometric series starting from index $n+1$ is:

$$\sum_{i=n+1}^{\infty} B^{-i} = \frac{B^{-(n+1)}}{1 - B^{-1}} = \frac{B^{-(n+1)}}{\frac{B-1}{B}} = \frac{1}{B^n(B-1)}$$

We want to ensure that even if a set X contains every single element from index $n+1$ onwards, its sum still cannot "reach" the value of the n -th element alone. This requires:

$$\begin{aligned}\phi(x_n) &> \sum_{i=n+1}^{\infty} \phi(x_i) \\ B^{-n} &> \frac{1}{B^n(B-1)}\end{aligned}$$

Deep Learning for Sets

Suppose we use base B , where $B > 1$. the value of a tail of a geometric series starting from index $n+1$ is:

$$\sum_{i=n+1}^{\infty} B^{-i} = \frac{B^{-(n+1)}}{1 - B^{-1}} = \frac{B^{-(n+1)}}{\frac{B-1}{B}} = \frac{1}{B^n(B-1)}$$

We want to ensure that even if a set X contains every single element from index $n+1$ onwards, its sum still cannot "reach" the value of the n -th element alone. This requires:

$$\begin{aligned}\phi(x_n) &> \sum_{i=n+1}^{\infty} \phi(x_i) \\ B^{-n} &> \frac{1}{B^n(B-1)}\end{aligned}$$

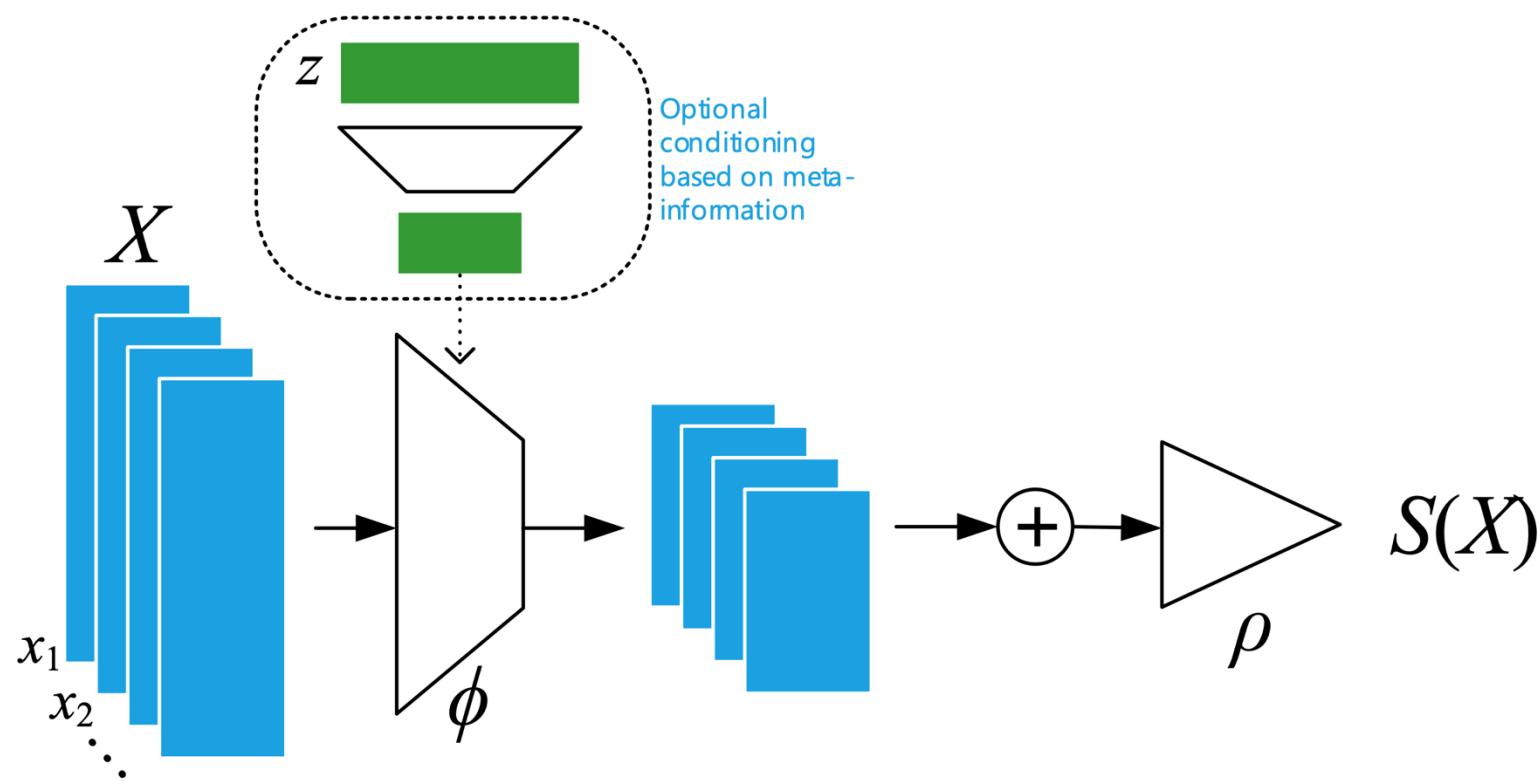
If we simplify this inequality, we get: $1 > \frac{1}{B-1} \implies B-1 > 1 \implies B > 2$

Therefore, any base greater than 2 works!

Deep Learning for Sets

- Deep Sets [1]

Invariant Architecture



Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - **DeepSets: permutation-equivariant linear mapping & architecture**
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sets

- Deep Sets [1]

$$\mathbf{f}_\Theta(\mathbf{x}) \doteq \boldsymbol{\sigma}(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 *The function $\mathbf{f}_\Theta : \mathbb{R}^M \rightarrow \mathbb{R}^M$ defined above is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,*

$$\Theta = \lambda \mathbf{I} + \gamma (\mathbf{1}\mathbf{1}^\top) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^M \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{ is the identity matrix}$$

Deep Learning for Sets

- Deep Sets [1]

$$\mathbf{f}_\Theta(\mathbf{x}) \doteq \sigma(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 *The function $\mathbf{f}_\Theta : \mathbb{R}^M \rightarrow \mathbb{R}^M$ defined above is permutation **equivariant** iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,*

$$\Theta = \lambda \mathbf{I} + \gamma (\mathbf{1}\mathbf{1}^\top) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^M \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{ is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise nonlinearity) reduces to

$$\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$$

Deep Learning for Sets

- Deep Sets [1]

$$\mathbf{f}_\Theta(\mathbf{x}) \doteq \sigma(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 *The function $\mathbf{f}_\Theta : \mathbb{R}^M \rightarrow \mathbb{R}^M$ defined above is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,*

$$\Theta = \lambda \mathbf{I} + \gamma (\mathbf{1}\mathbf{1}^\top) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^M \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{ is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise nonlinearity) reduces to

$$\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$$

Sufficiency: Θ is commutable with permutation matrix

Deep Learning for Sets

- Deep Sets [1]

$$\mathbf{f}_\Theta(\mathbf{x}) \doteq \sigma(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 *The function $\mathbf{f}_\Theta : \mathbb{R}^M \rightarrow \mathbb{R}^M$ defined above is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,*

$$\Theta = \lambda \mathbf{I} + \gamma (\mathbf{1}\mathbf{1}^\top) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^M \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{ is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

Sufficiency: Θ is commutable with permutation matrix

Necessity: consider a special permutation (i.e., transposition / swap) $\pi_{i,j}^\top = \pi_{i,j}^{-1} = \pi_{j,i}$

1. All diagonal elements are identical

$$\pi_{k,l} \Theta = \Theta \pi_{k,l} \Rightarrow \pi_{k,l} \Theta \pi_{l,k} = \Theta \Rightarrow (\pi_{k,l} \Theta \pi_{l,k})_{l,l} = \Theta_{l,l} \Rightarrow \Theta_{k,k} = \Theta_{l,l}$$

Deep Learning for Sets

- Deep Sets [1]

$$\mathbf{f}_\Theta(\mathbf{x}) \doteq \sigma(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 *The function $\mathbf{f}_\Theta : \mathbb{R}^M \rightarrow \mathbb{R}^M$ defined above is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,*

$$\Theta = \lambda \mathbf{I} + \gamma (\mathbf{1}\mathbf{1}^\top) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^M \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{ is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

Sufficiency: Θ is commutable with permutation matrix

Necessity: consider a special permutation (i.e., transposition / swap) $\pi_{i,j}^\top = \pi_{i,j}^{-1} = \pi_{j,i}$

1. All diagonal elements are identical

$$\pi_{k,l} \Theta = \Theta \pi_{k,l} \Rightarrow \pi_{k,l} \Theta \pi_{l,k} = \Theta \Rightarrow (\pi_{k,l} \Theta \pi_{l,k})_{l,l} = \Theta_{l,l} \Rightarrow \Theta_{k,k} = \Theta_{l,l}$$

2. All off-diagonal elements are identical

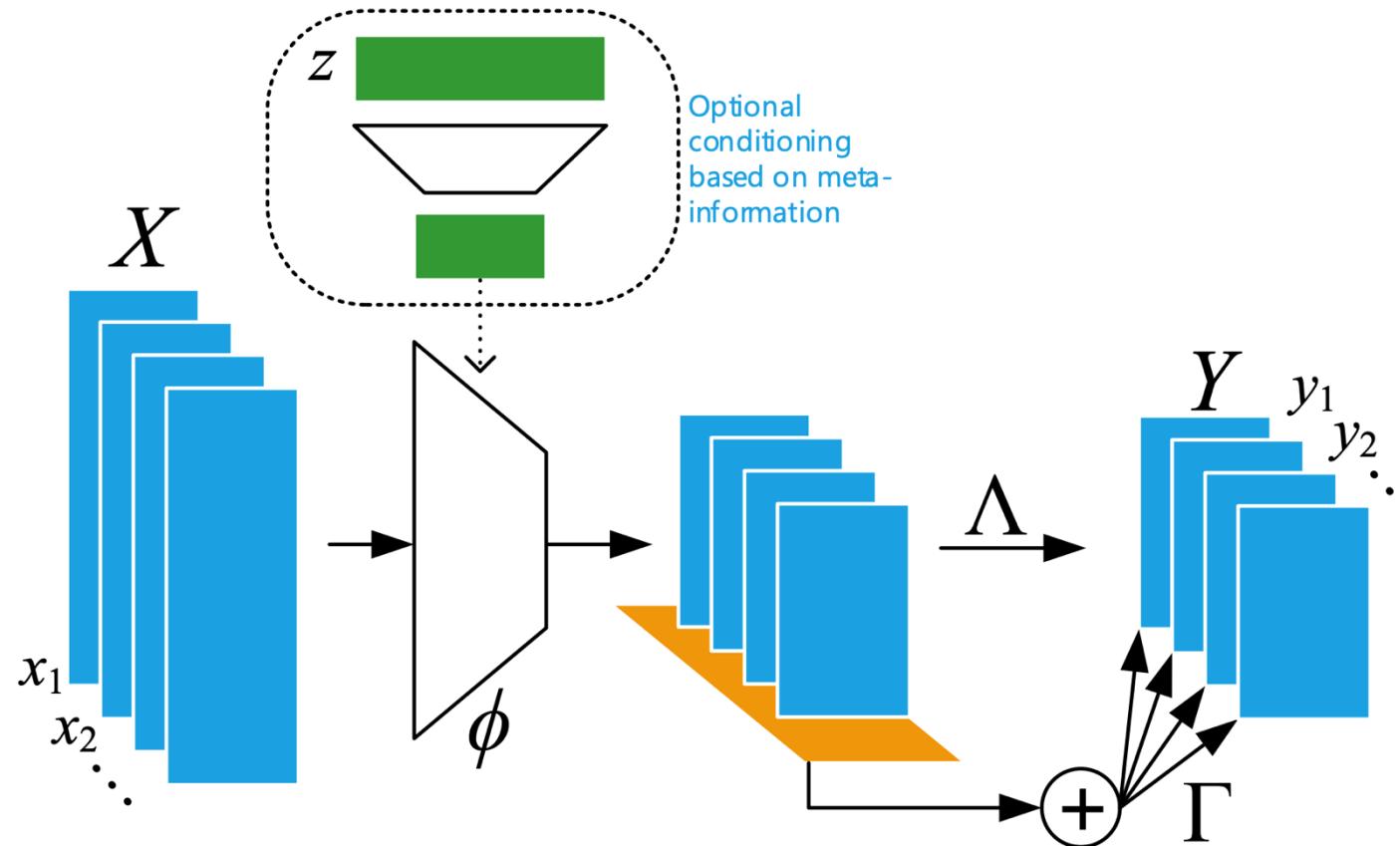
$$\begin{aligned} \pi_{j',j} \pi_{i,i'} \Theta = \Theta \pi_{j',j} \pi_{i,i'} &\Rightarrow \pi_{j',j} \pi_{i,i'} \Theta (\pi_{j',j} \pi_{i,i'})^{-1} = \Theta &\Rightarrow \\ \pi_{j',j} \pi_{i,i'} \Theta \pi_{i',i} \pi_{j,j'} = \Theta &\Rightarrow (\pi_{j',j} \pi_{i,i'} \Theta \pi_{i',i} \pi_{j,j'})_{i,j} = \Theta_{i,j} &\Rightarrow \Theta_{i',j'} = \Theta_{i,j} \end{aligned}$$

Deep Learning for Sets

- Deep Sets [1]

Equivariant Architecture

$$f(\mathbf{x}) = \sigma(\mathbf{x}\Lambda - \mathbf{1}\mathbf{1}^T\mathbf{x}\Gamma)$$

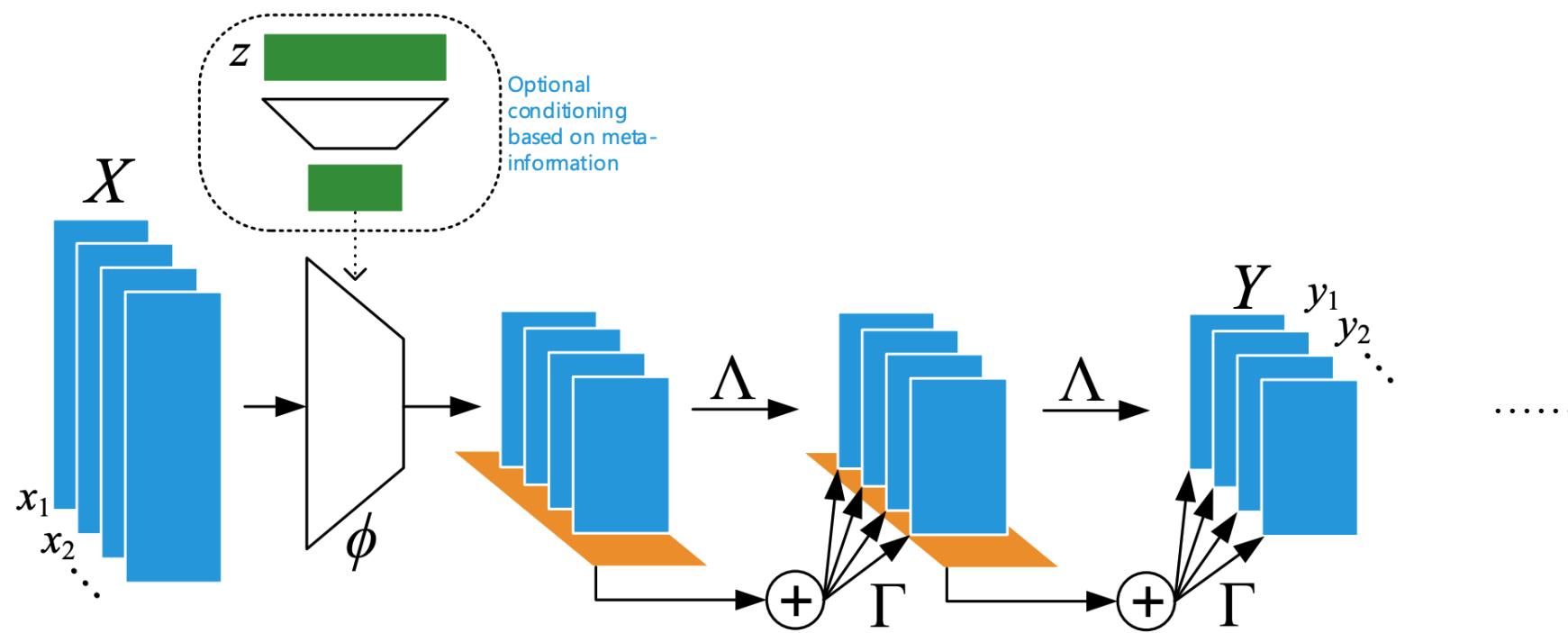


Deep Learning for Sets

- Deep Sets [1]

Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]



Outline

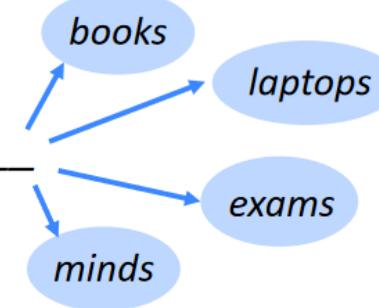
- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - **Transformers**
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sequences

- Language Models

$$P(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)}, \dots, \mathbf{x}^{(1)})$$

the students opened their _____

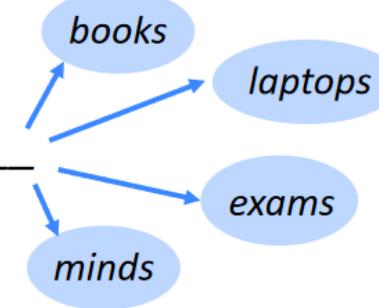


Deep Learning for Sequences

- Language Models

$$P(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)}, \dots, \mathbf{x}^{(1)})$$

the students opened their _____



- Machine Translation

Deep Learning for Sequences

Key Challenges:

- Varying-sized input sequences

Deep Learning for Sequences

Key Challenges:

- Varying-sized input sequences
- Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

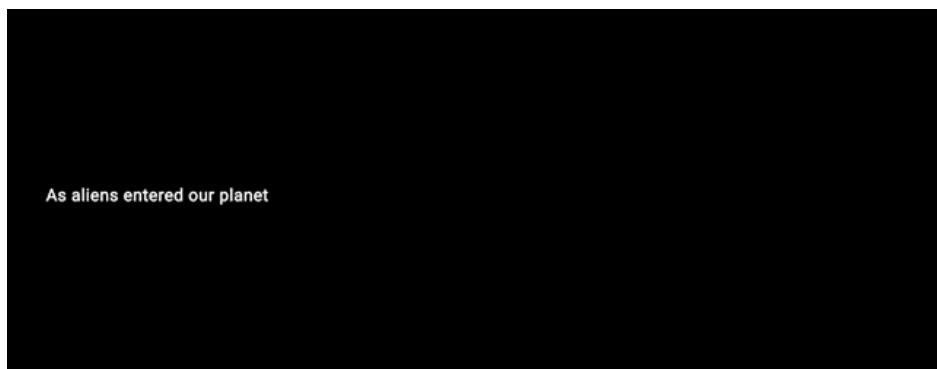
Deep Learning for Sequences

Key Challenges:

- Varying-sized input sequences
- Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can stil raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

- Complex statistical dependencies (e.g. long-range ones)



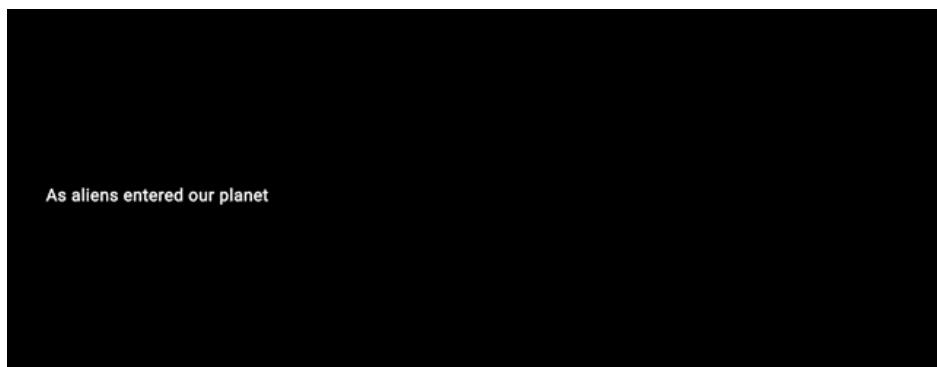
Deep Learning for Sequences

Key Challenges:

- Varying-sized input sequences
- Orders “may” be crucial for cognition

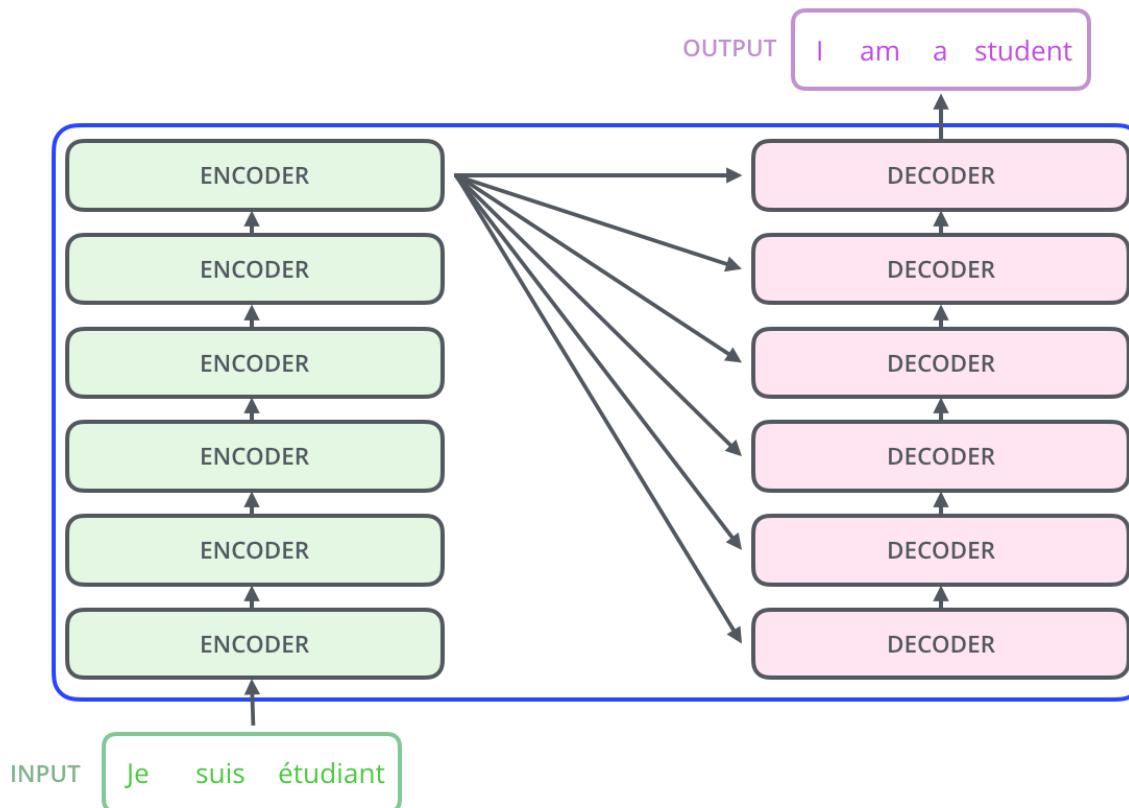
Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can stil raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

- Complex statistical dependencies (e.g. long-range ones)

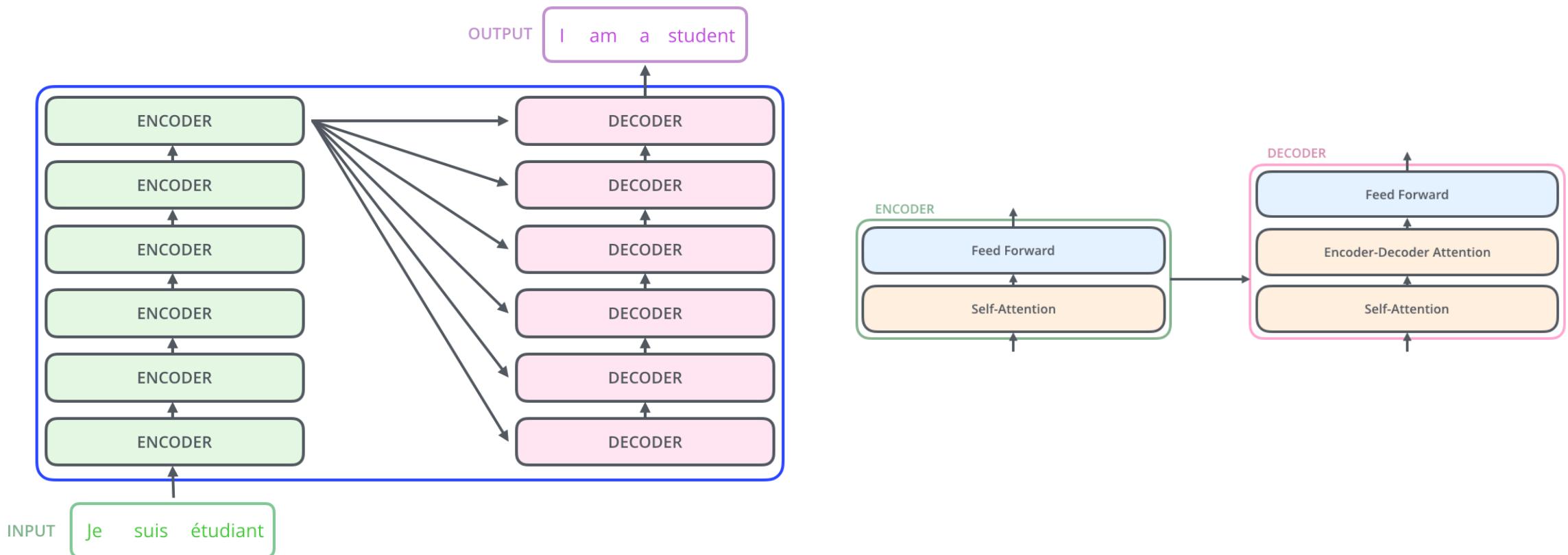


LSTM [1]
GRU [2]
Seq2Seq [3]
Transformer [4]

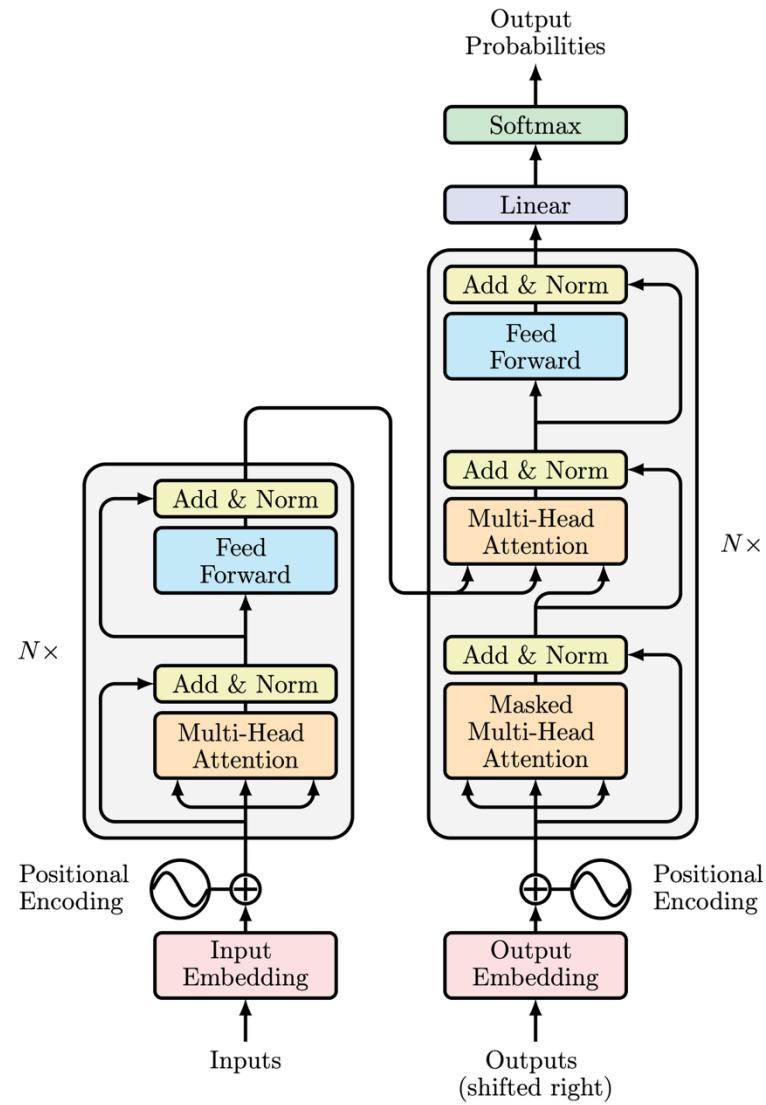
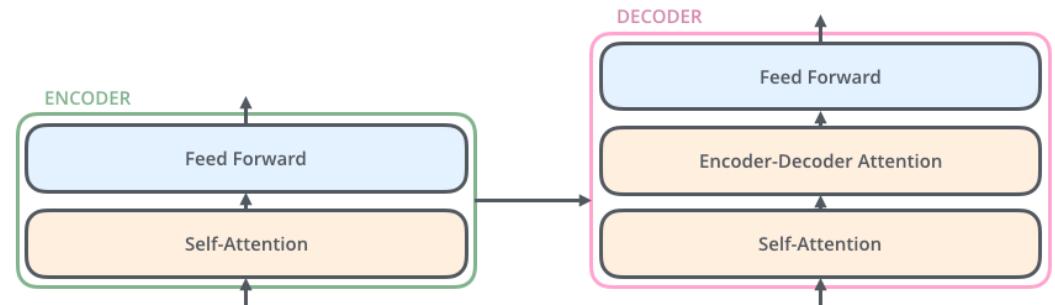
Transformers



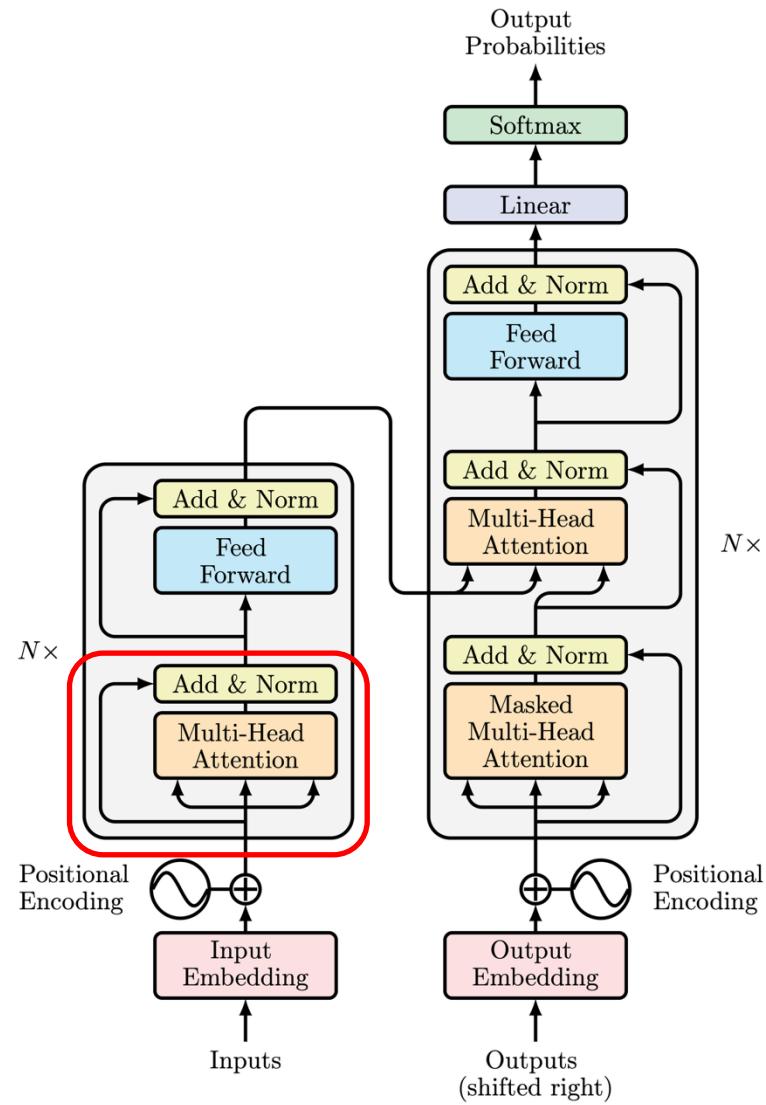
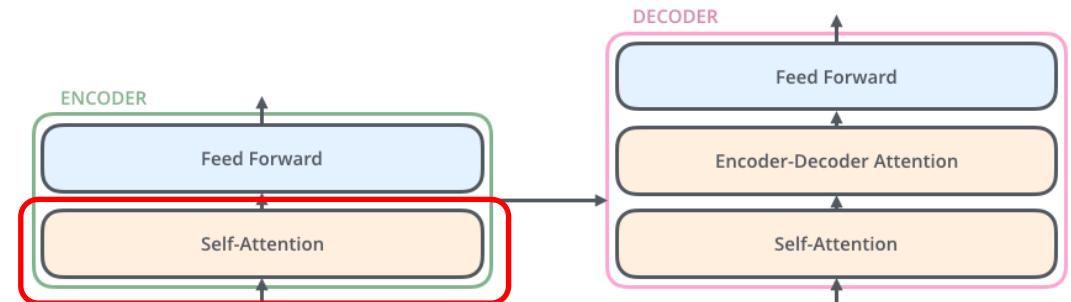
Transformers



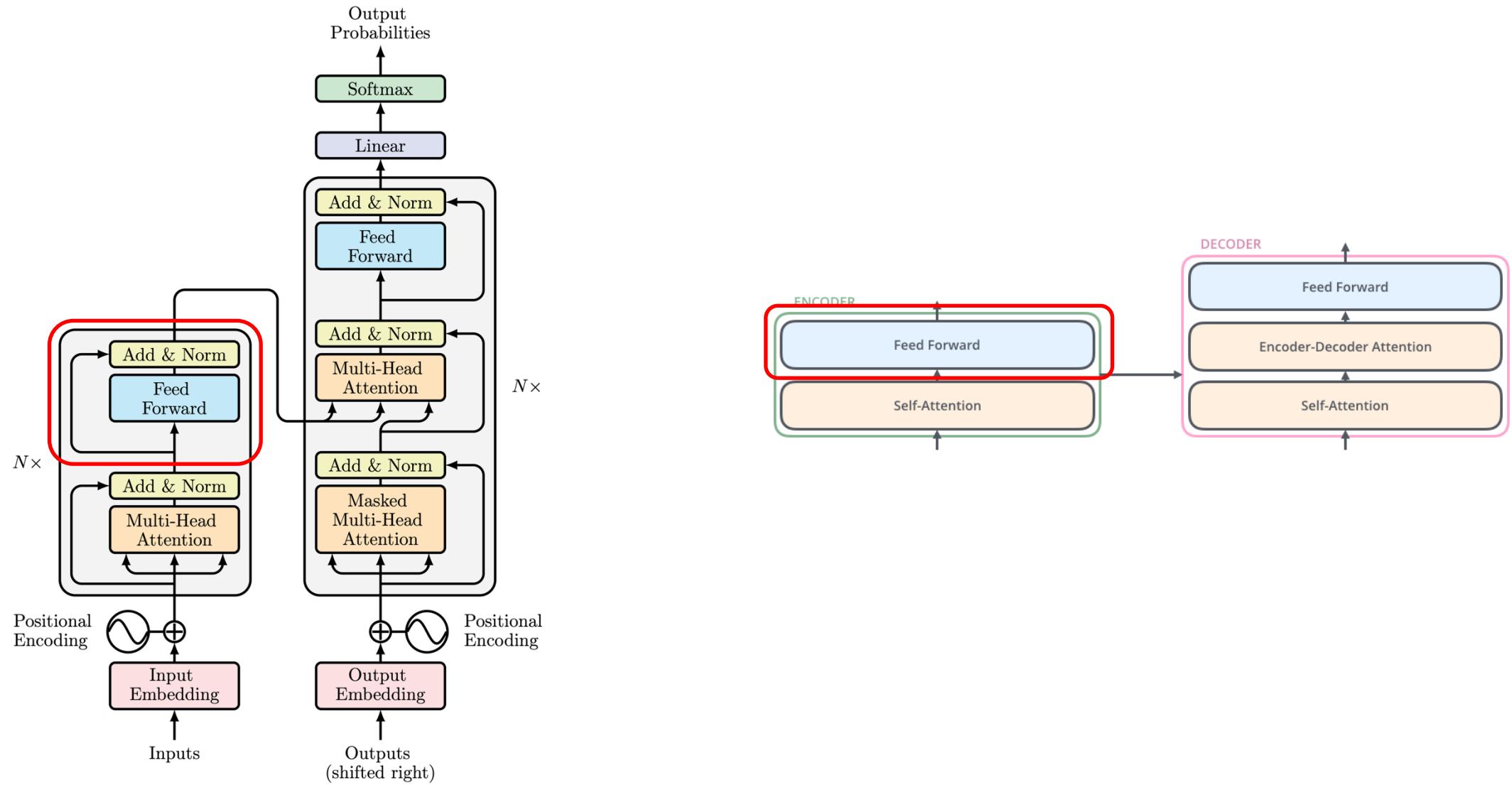
Transformers



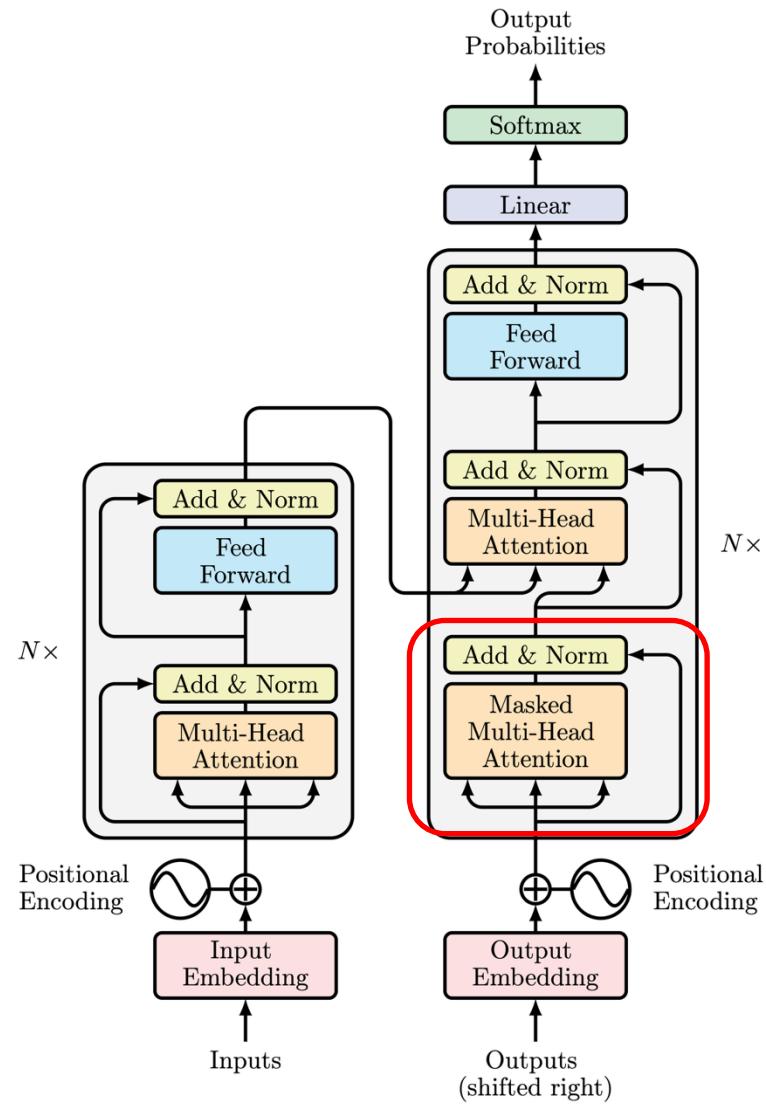
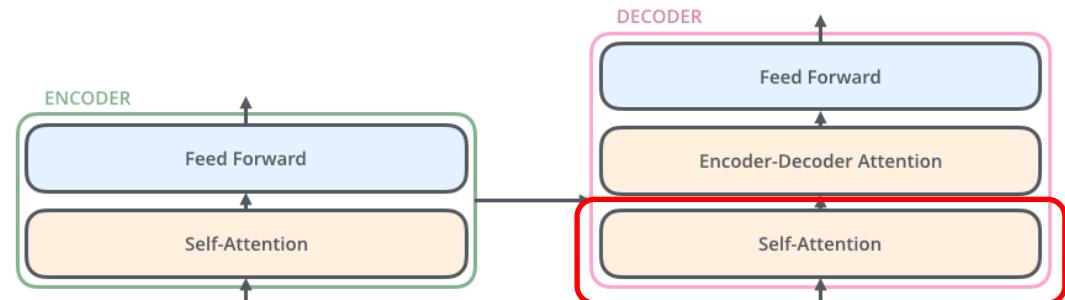
Transformers



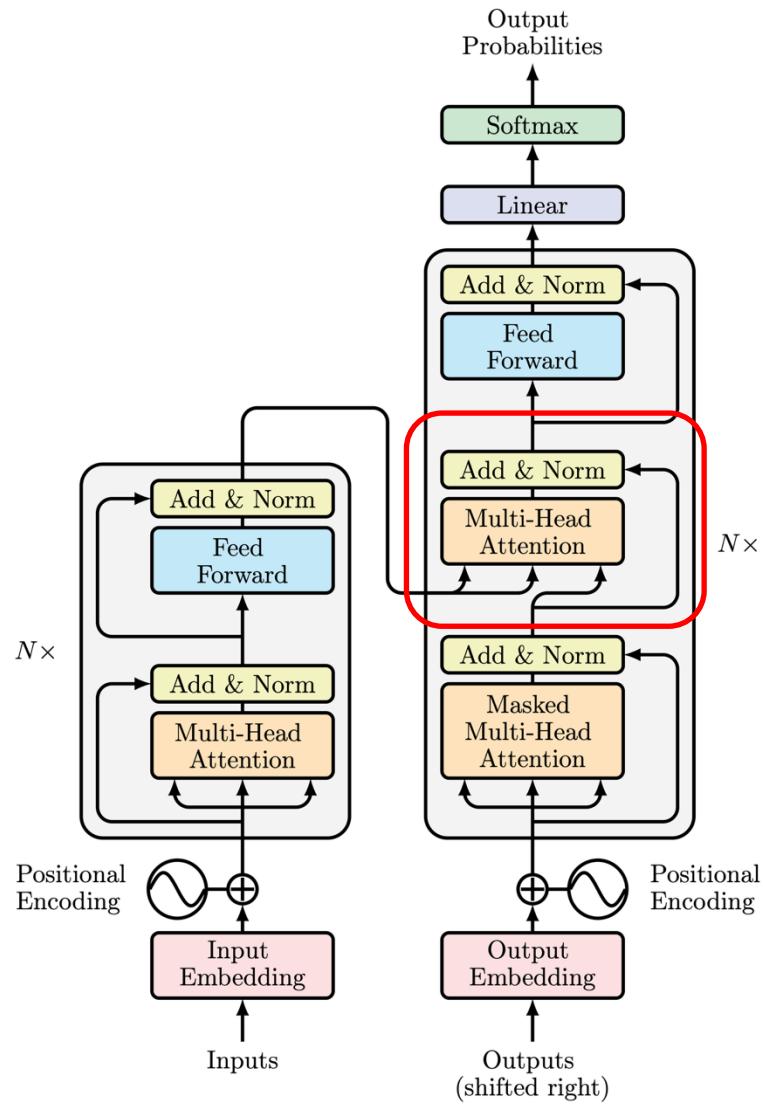
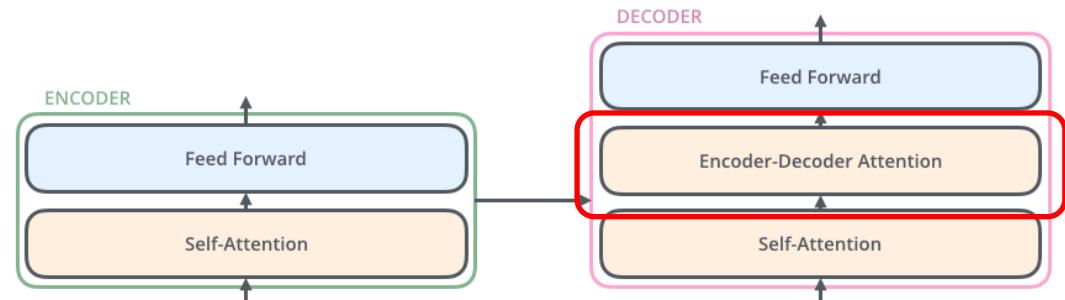
Transformers



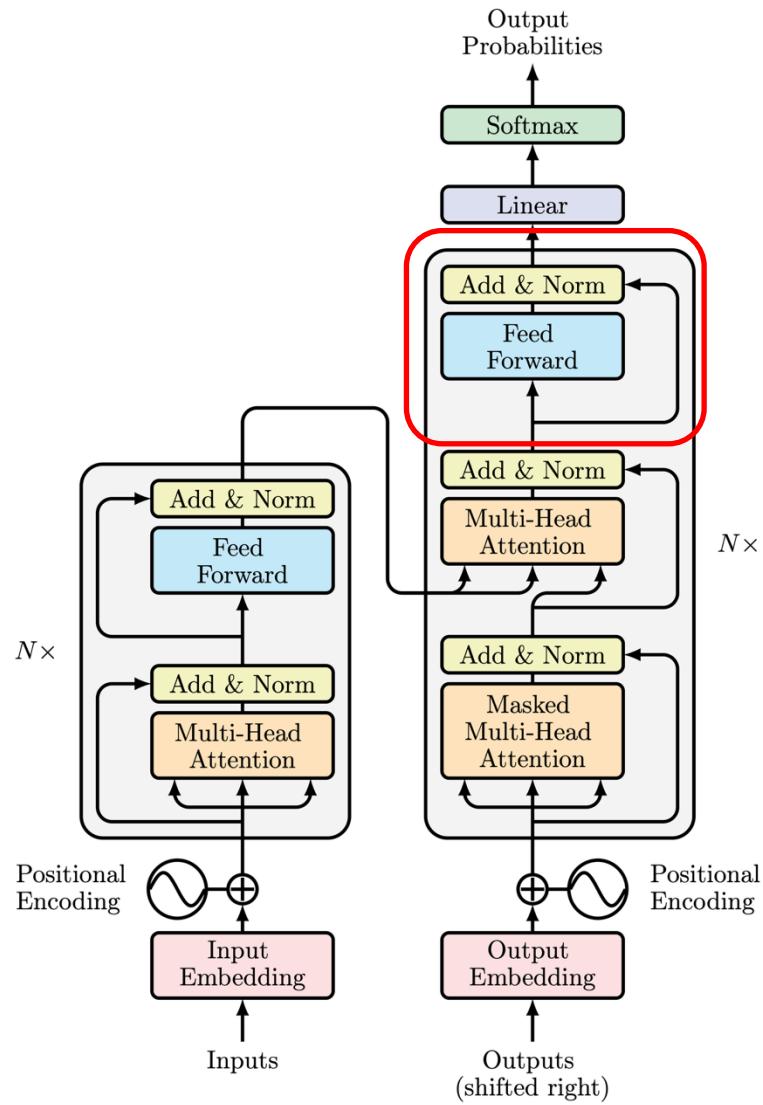
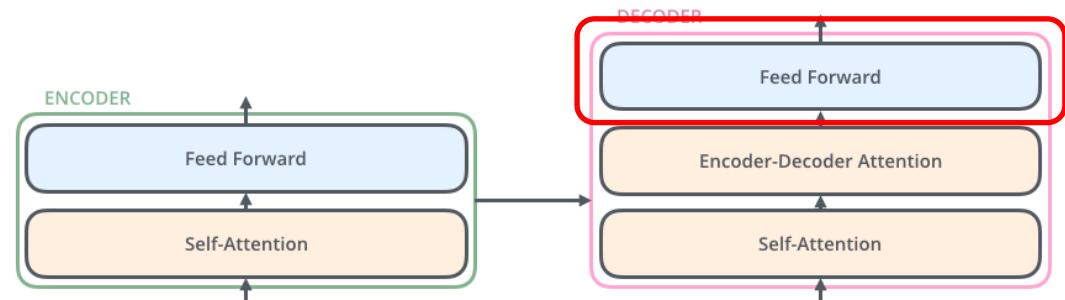
Transformers



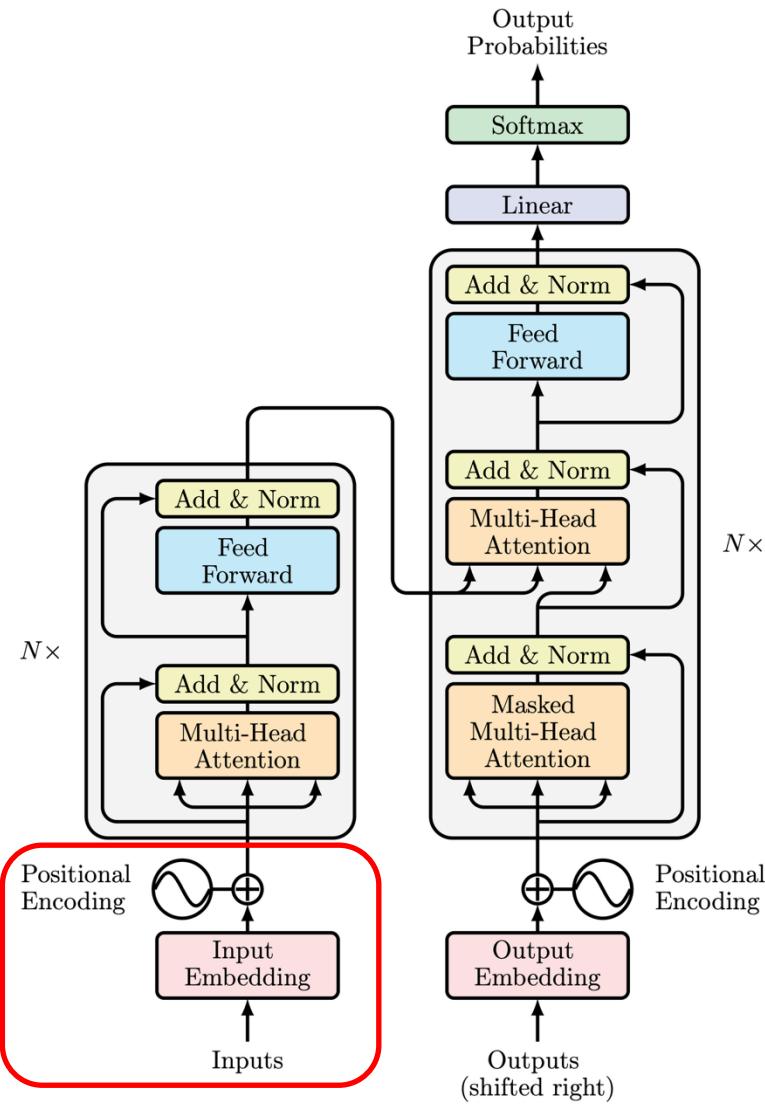
Transformers



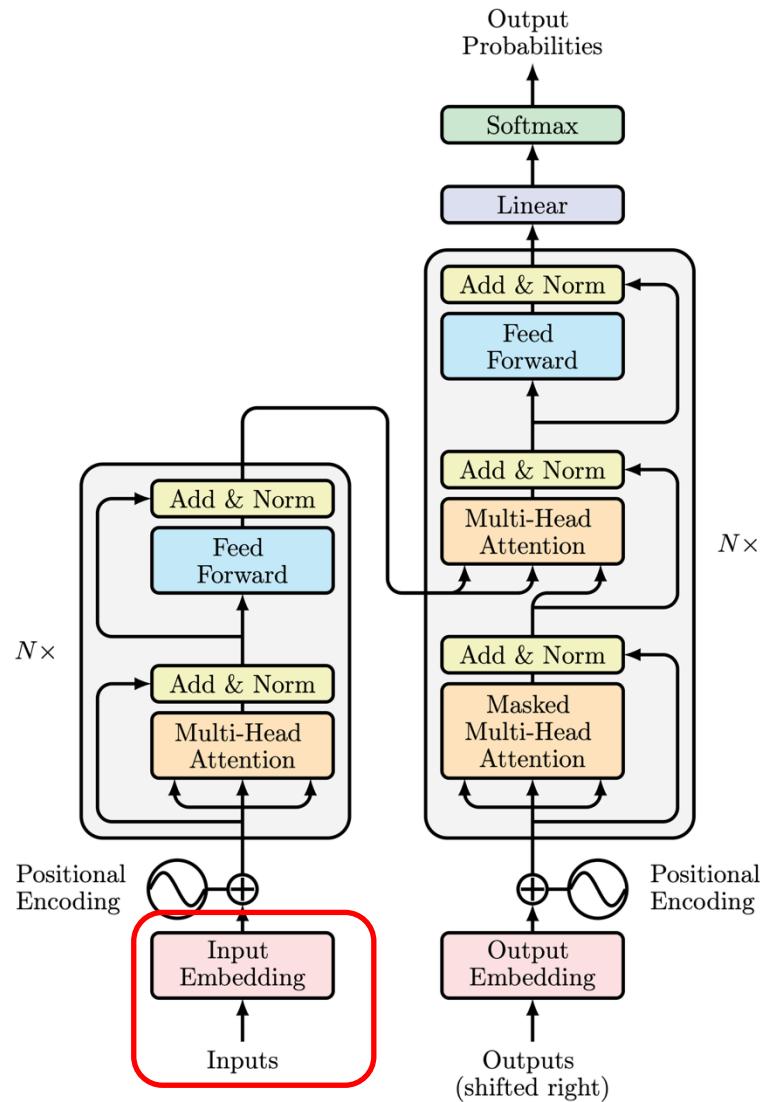
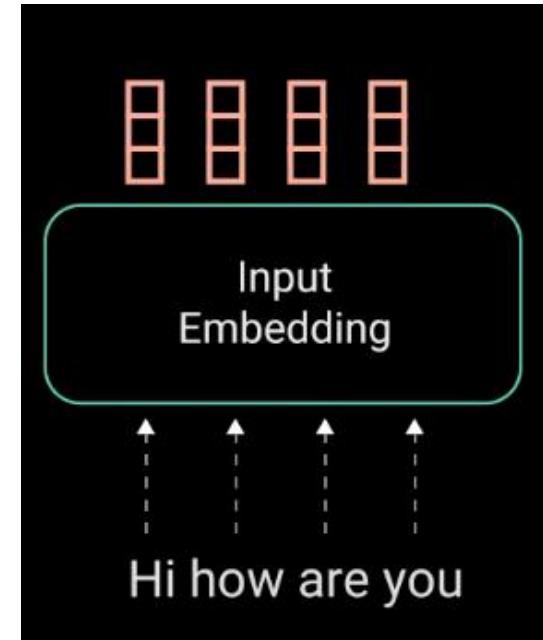
Transformers



Input Encoding



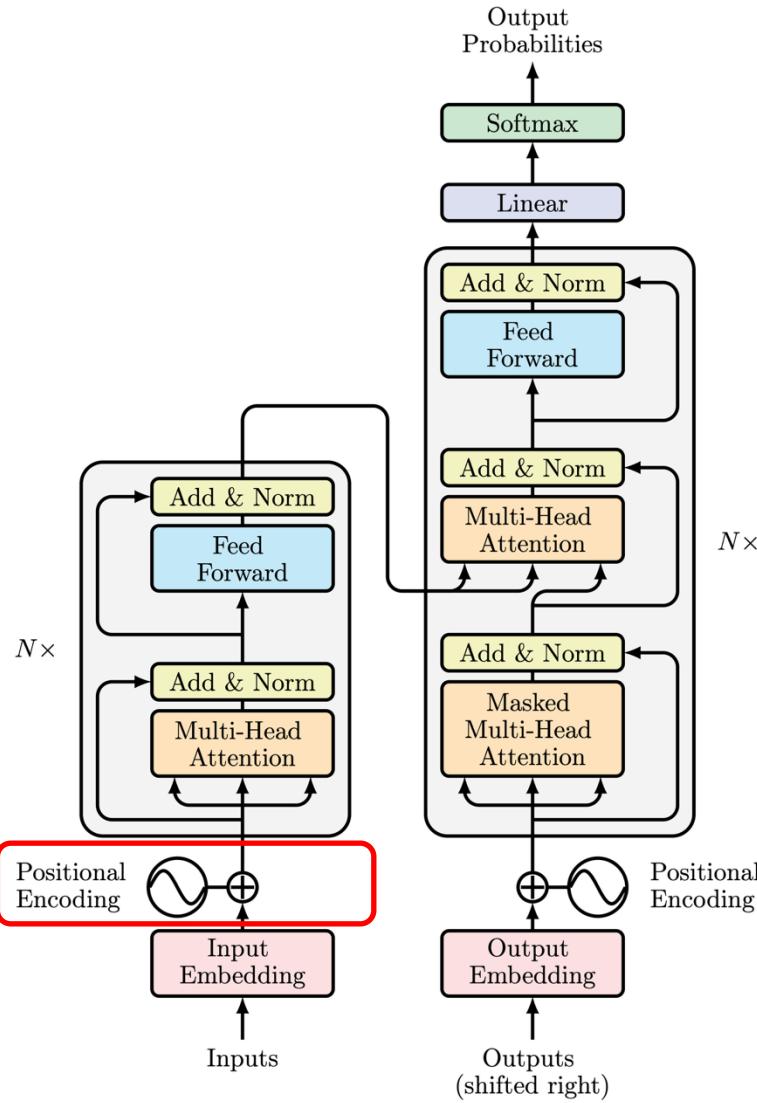
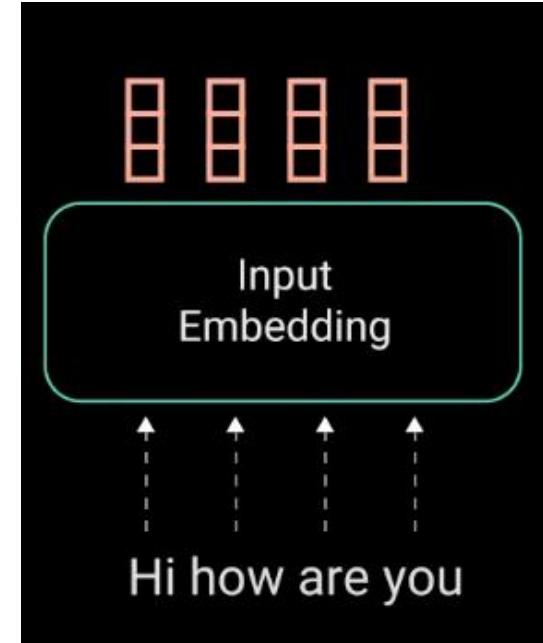
Input Embedding



Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - **Positional encoding vs. Rotary Positional Embeddings (RoPE)**
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

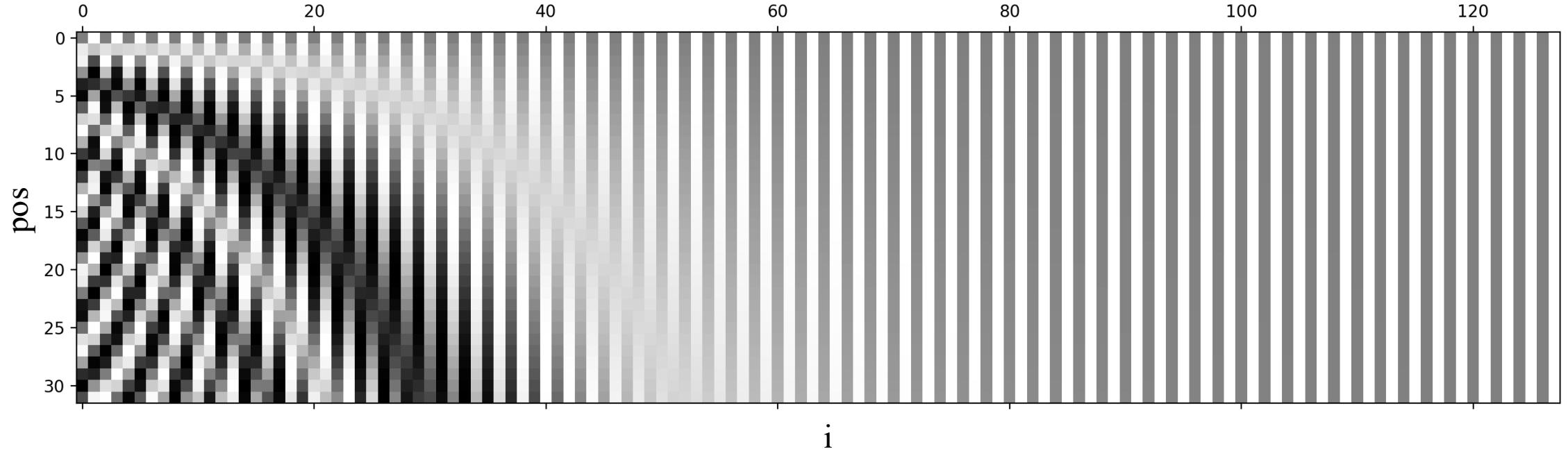
Positional Encoding



$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

Positional Encoding



$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$

Absolute vs. Relative Positional Encoding

Encode relative position information could help better model the dependency among tokens.

How to encode relative positions?

- We can inject the relative position into the bias of attention.
- We can use Rotary Position Embedding (RoPE) [1], which is more effective empirically.

To understand RoPE, let us recap how to rotate a 2D vector:

$$\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}}_{\mathbf{R}_{\theta, m}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Rotation matrix is orthogonal and preserves the norm!

Rotary Positional Embedding

RoPE first divide d -dimension vector space in $d/2$ subspaces and then rotate them based on the position:

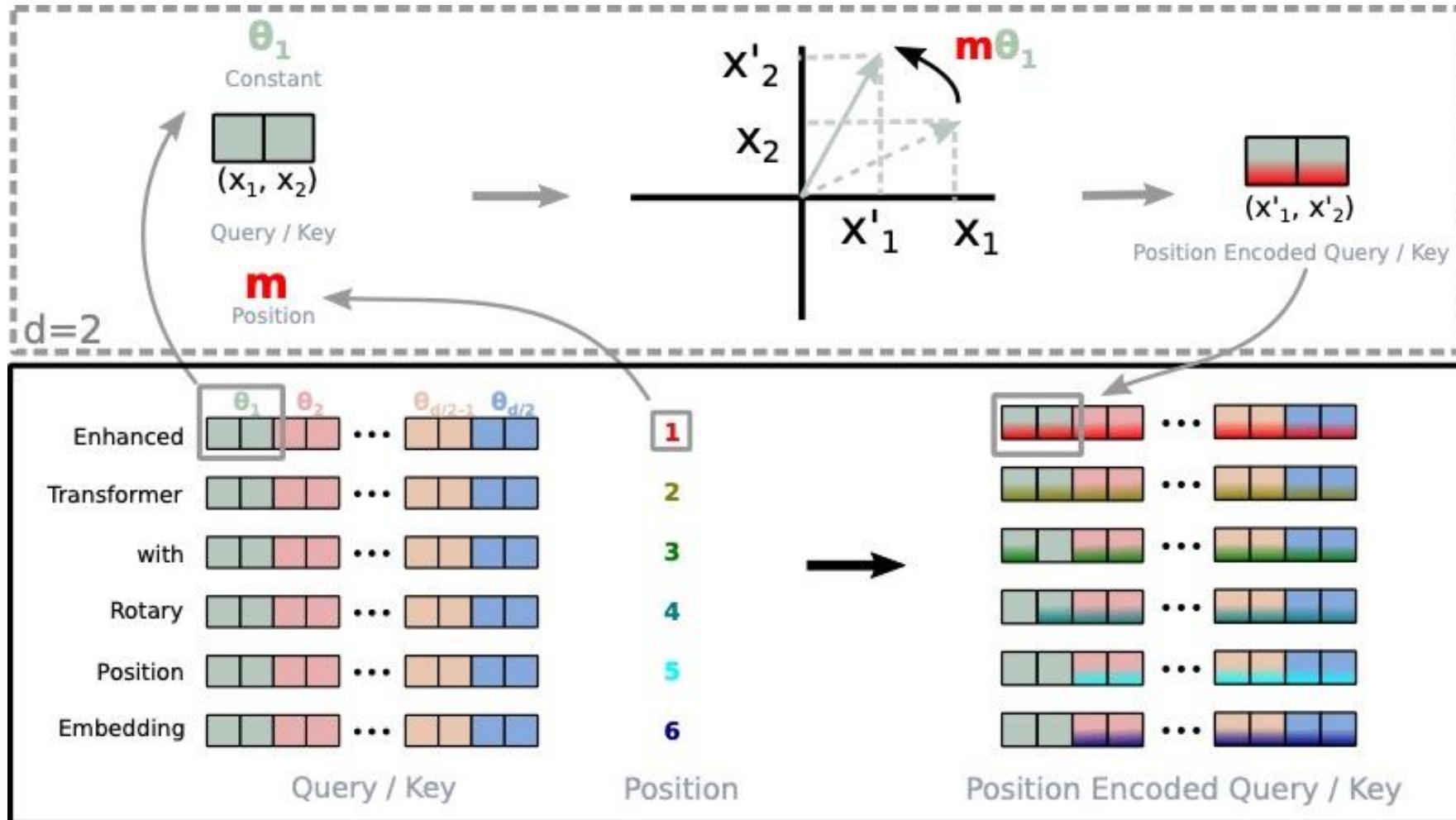
$$\begin{bmatrix} x'_1 \\ \vdots \\ x'_d \end{bmatrix} = \underbrace{\begin{bmatrix} \cos m\theta_1 & -\sin m\theta_1 & 0 & 0 & \cdots & 0 & 0 \\ \sin m\theta_1 & \cos m\theta_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 & -\sin m\theta_2 & \cdots & 0 & 0 \\ 0 & 0 & \sin m\theta_2 & \cos m\theta_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2} \\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{bmatrix}}_{\mathbf{R}_{\Theta, m}^d} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Here $\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, \dots, d/2]\}$

In practice, we can apply 2D rotations to pairs $(x_1, x_{1+d/2}), (x_2, x_{2+d/2}), \dots, (x_{d/2}, x_d)$

Rotary Positional Embedding

RoPE first divide d -dimension vector space in $d/2$ subspaces and then rotate them based on the position:



Rotary Positional Embedding

What do we gain in RoPE?

- Inner product depends on the relative position

Let us look at the case of 2D:

$$\begin{aligned}
 \left\langle \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix}, \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix} \right\rangle &= \left\langle \underbrace{\begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}}_{\mathbf{R}_{\theta,m}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \underbrace{\begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}}_{\mathbf{R}_{\theta,n}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}^\top \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos m\theta \cos n\theta + \sin m\theta \sin n\theta & -\cos m\theta \sin n\theta + \sin m\theta \cos n\theta \\ -\sin m\theta \cos n\theta + \cos m\theta \sin n\theta & \sin m\theta \sin n\theta + \cos m\theta \cos n\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos(m-n)\theta & \sin(m-n)\theta \\ \sin(n-m)\theta & \cos(m-n)\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \underbrace{\begin{bmatrix} \cos(m-n)\theta & -\sin(m-n)\theta \\ \sin(m-n)\theta & \cos(m-n)\theta \end{bmatrix}}_{\mathbf{R}_{\theta,m-n}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{R}_{\theta,0}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \left\langle \mathbf{R}_{\theta,m-n} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{R}_{\theta,0} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle
 \end{aligned}$$

Rotary Positional Embedding

What do we gain in RoPE?

- Inner product depends on the relative position

Let us look at the case of 2D:

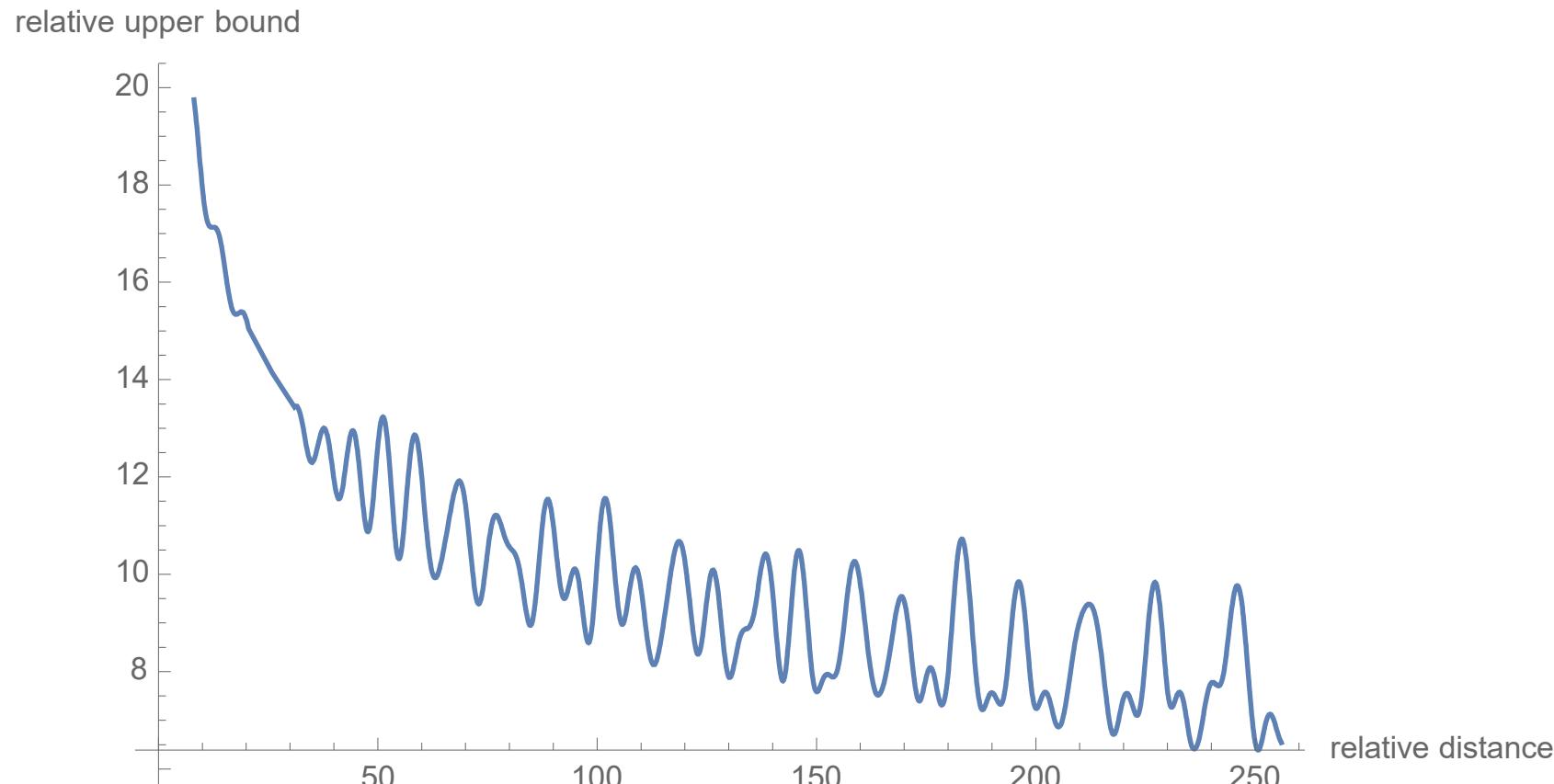
$$\begin{aligned}
 \left\langle \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix}, \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix} \right\rangle &= \left\langle \underbrace{\begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}}_{\mathbf{R}_{\theta,m}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \underbrace{\begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}}_{\mathbf{R}_{\theta,n}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}^\top \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos m\theta \cos n\theta + \sin m\theta \sin n\theta & -\cos m\theta \sin n\theta + \sin m\theta \cos n\theta \\ -\sin m\theta \cos n\theta + \cos m\theta \sin n\theta & \sin m\theta \sin n\theta + \cos m\theta \cos n\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \cos(m-n)\theta & \sin(m-n)\theta \\ \sin(n-m)\theta & \cos(m-n)\theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
 &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \underbrace{\begin{bmatrix} \cos(m-n)\theta & -\sin(m-n)\theta \\ \sin(m-n)\theta & \cos(m-n)\theta \end{bmatrix}}_{\mathbf{R}_{\theta,m-n}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{R}_{\theta,0}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \left\langle \mathbf{R}_{\theta,m-n} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{R}_{\theta,0} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle
 \end{aligned}$$

This holds for d-dimension as we construct a block-diagonal matrix with 2D rotation matrices!

Rotary Positional Embedding

What do we gain in RoPE?

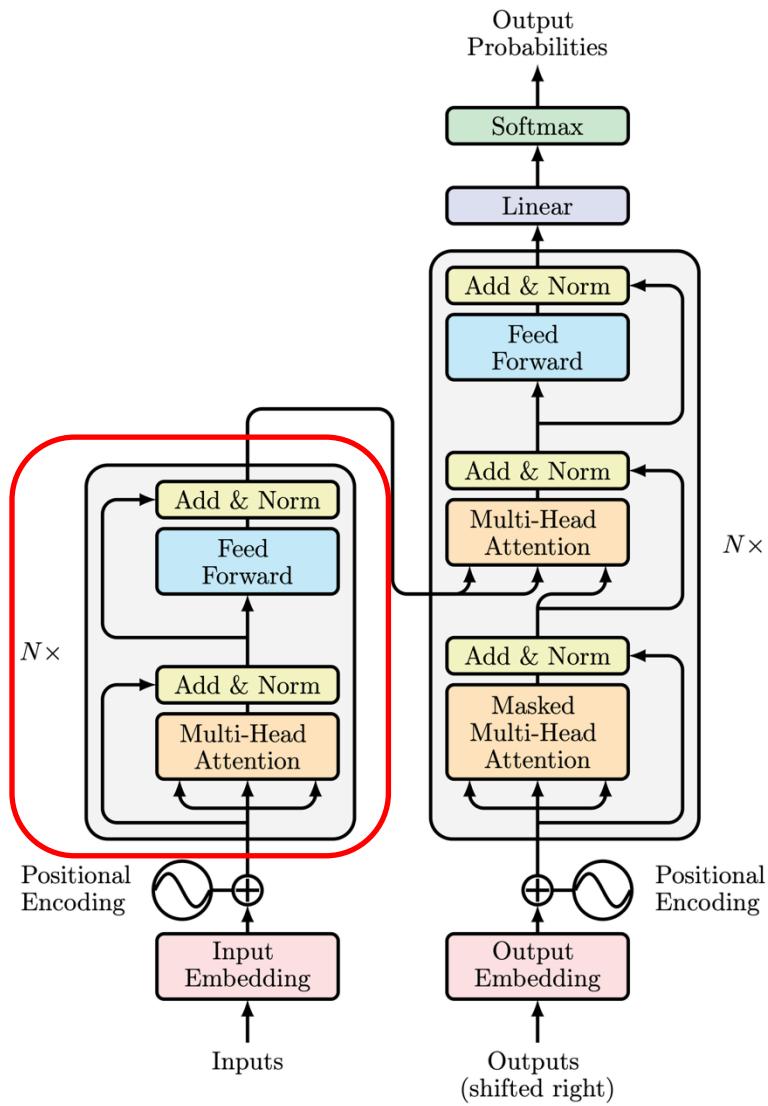
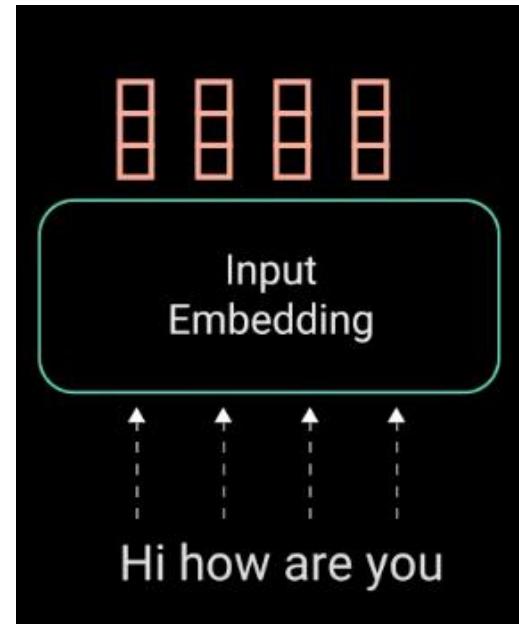
- Long-term decay of inner product w.r.t. relative positions



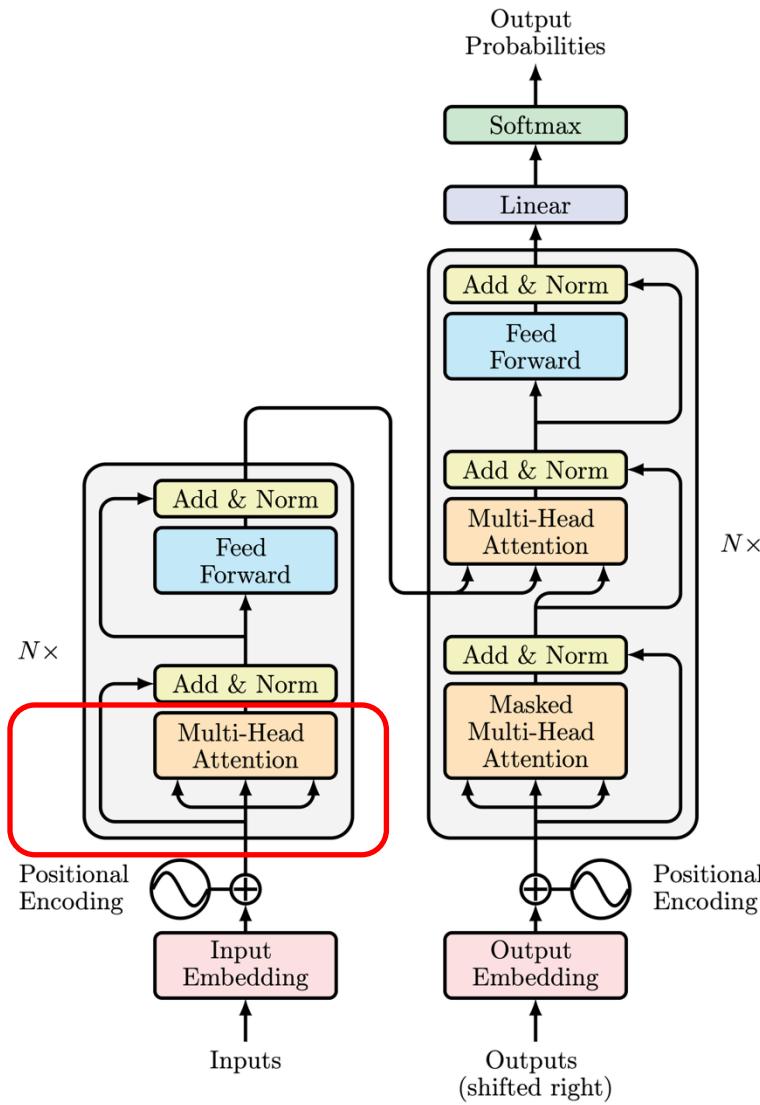
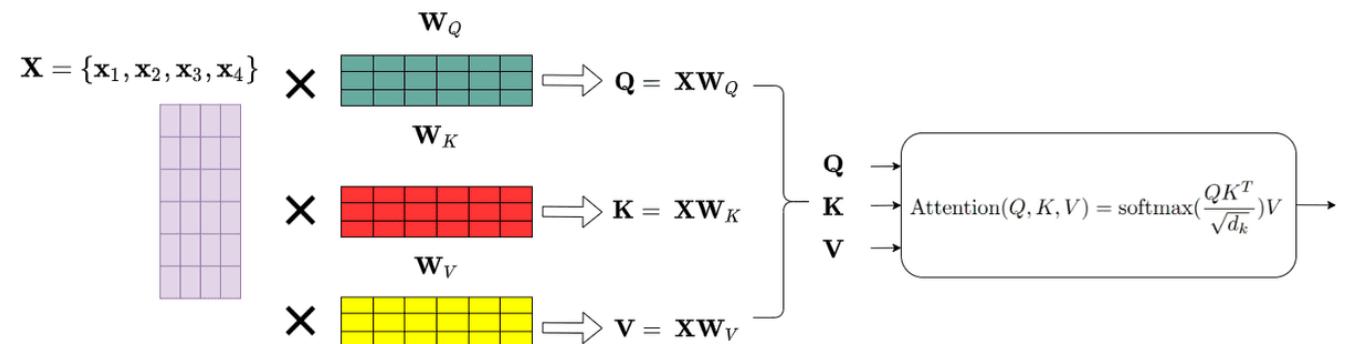
Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - **Attention & Flash Attention**
 - Pre-norm vs. post-norm
 - Vision Transformers (ViT) & Swin Transformers

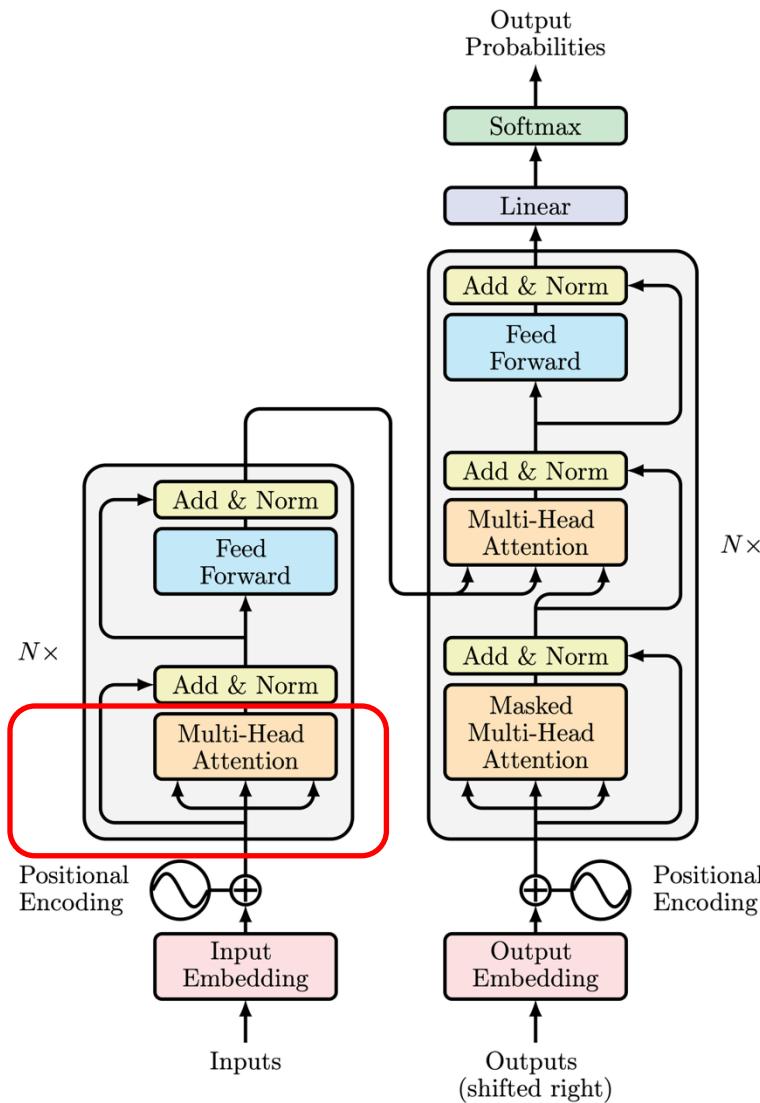
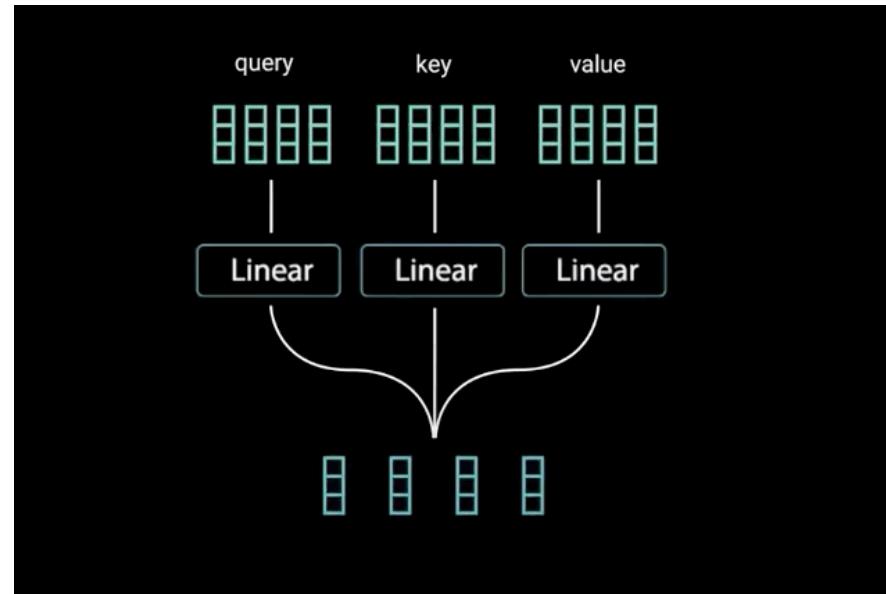
Encoder



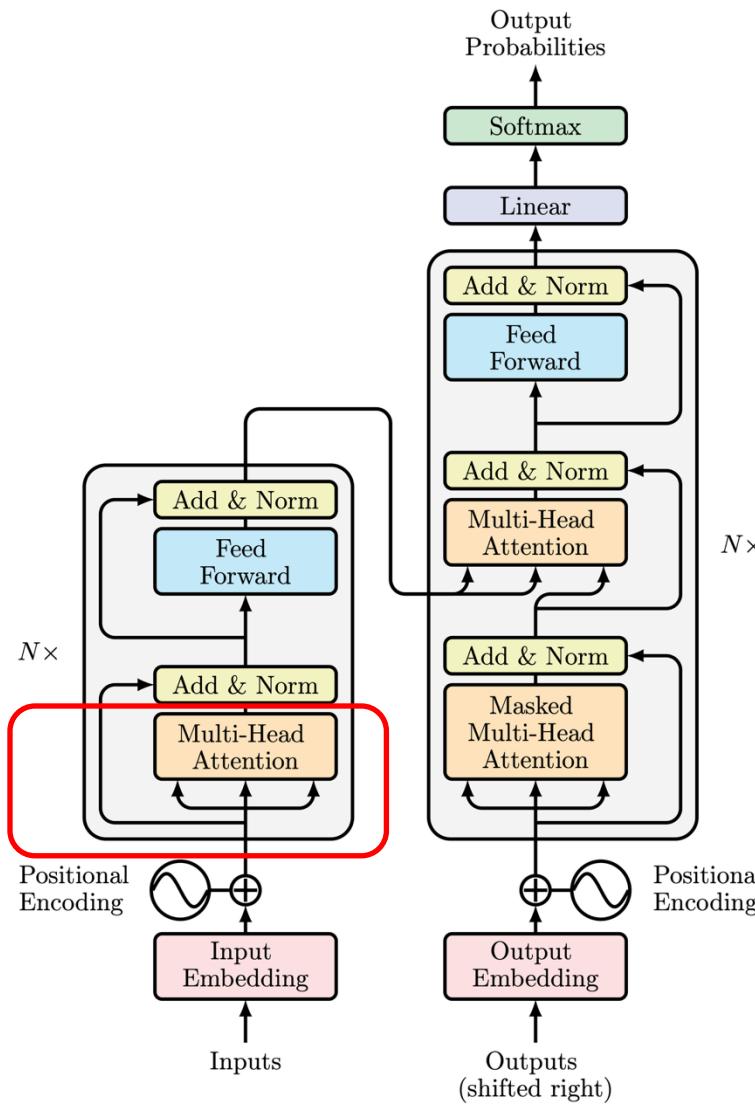
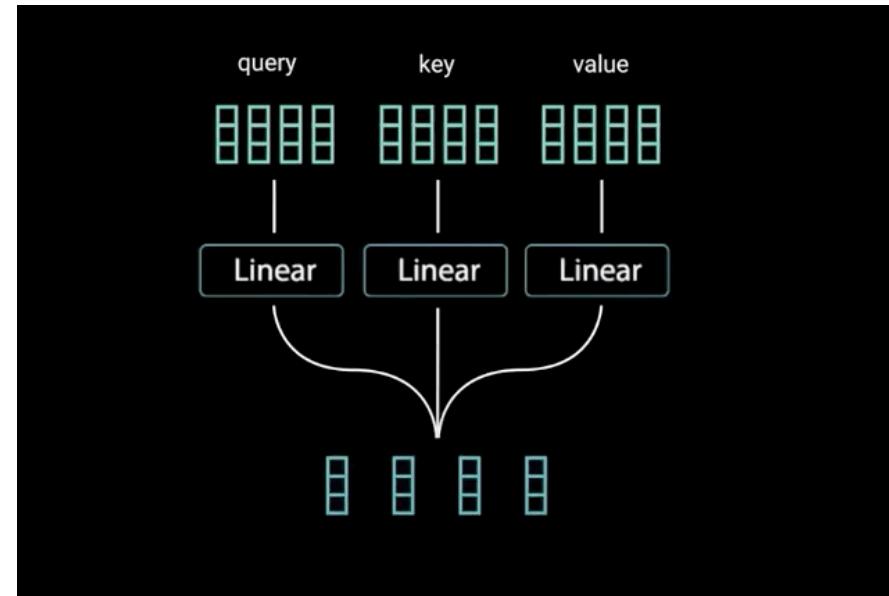
Multi-Head Attention



Multi-Head Attention



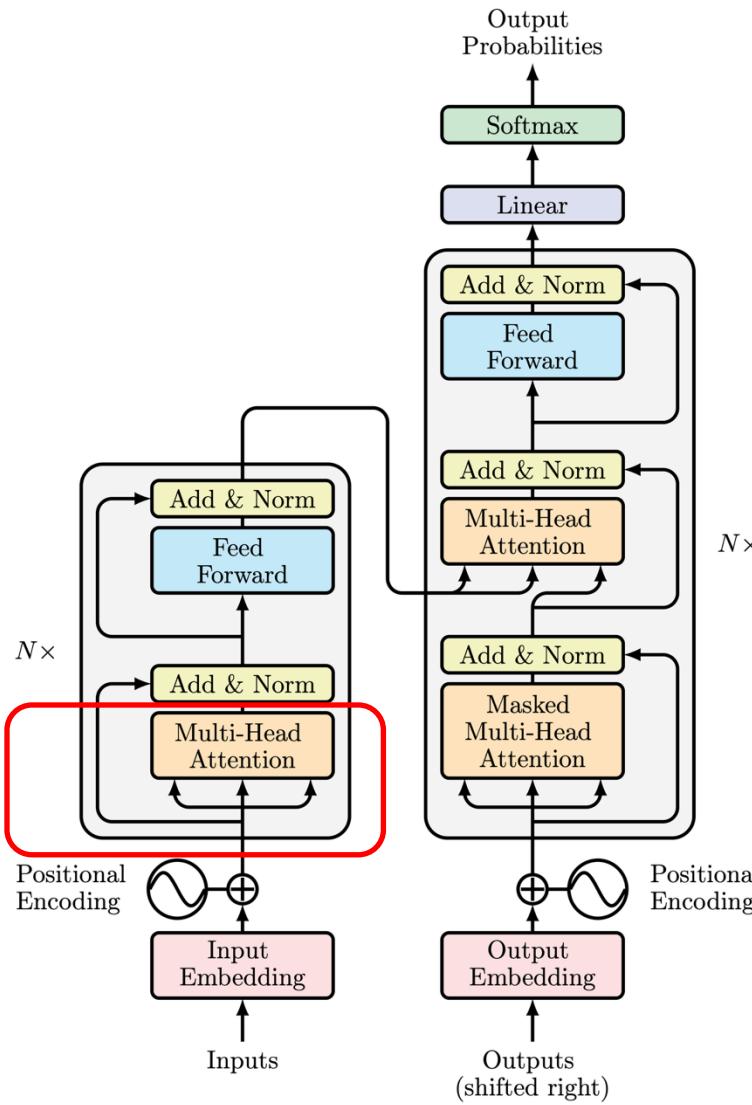
Multi-Head Attention



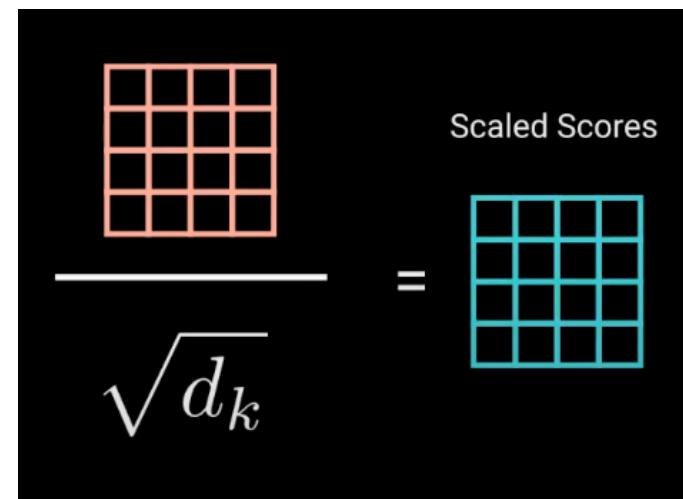
A 4x4 matrix of attention weights for the sequence "Hi how are you". The rows are labeled with words and the columns are labeled with the first four tokens of the sequence. The matrix is highlighted with a red border.

	Hi	how	are	you
Hi	98	27	10	12
how	27	89	31	67
are	10	31	91	54
you	12	67	54	92

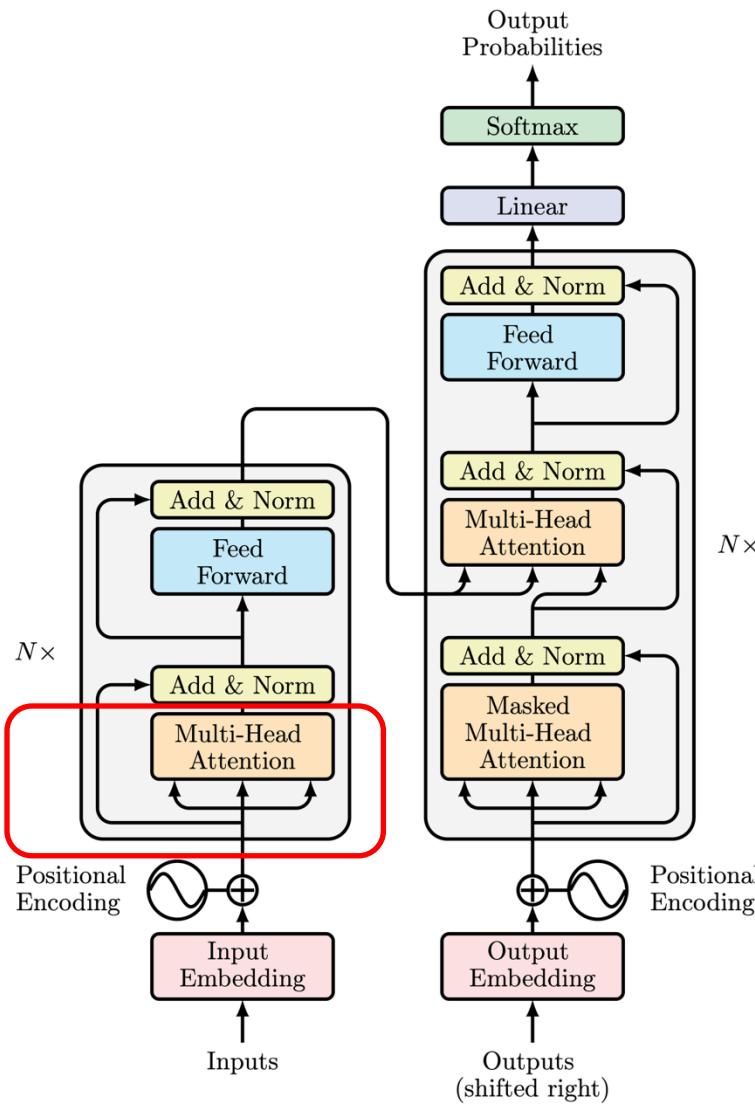
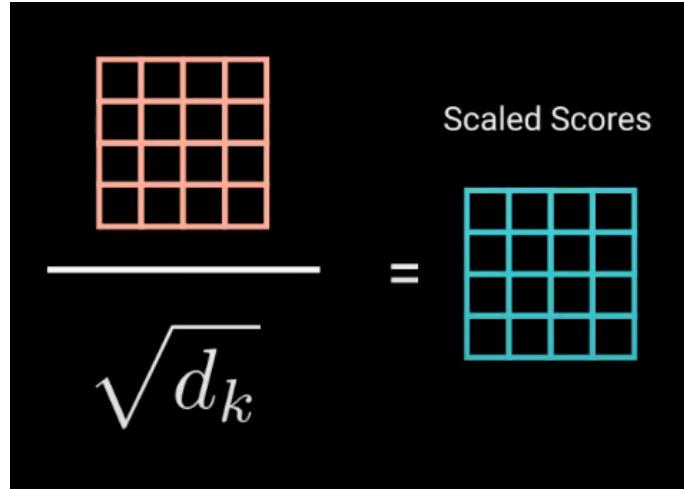
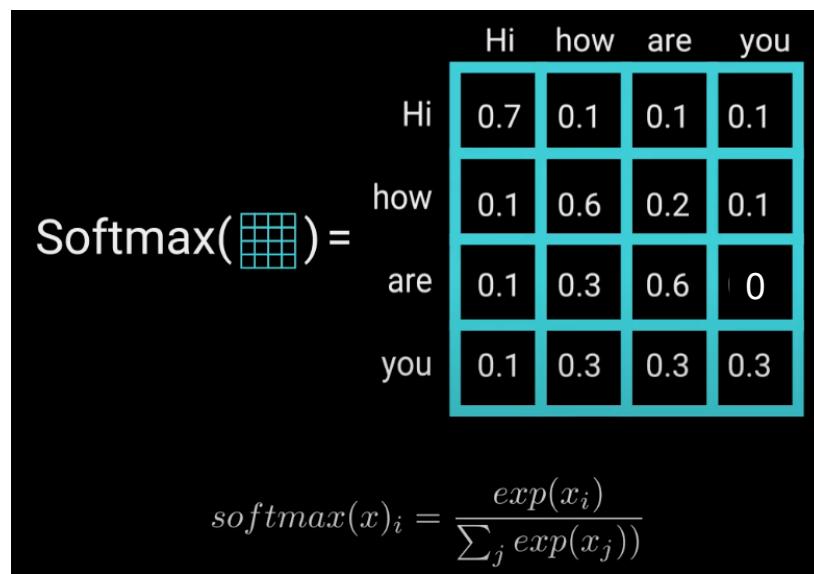
Multi-Head Attention



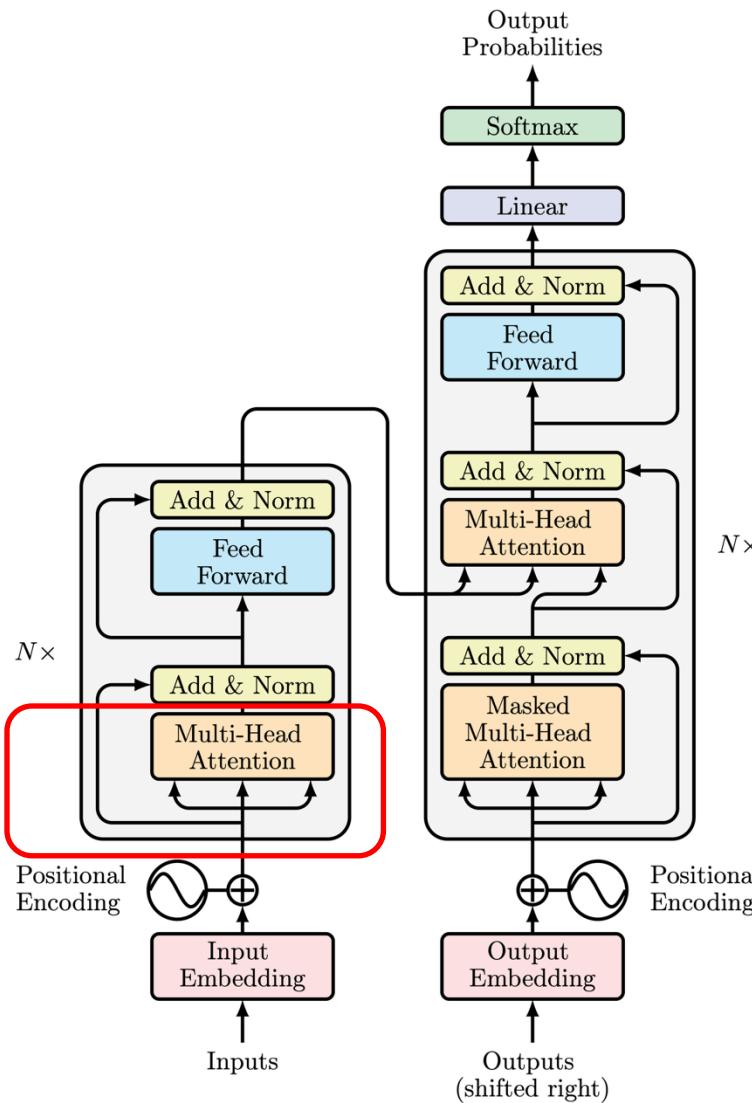
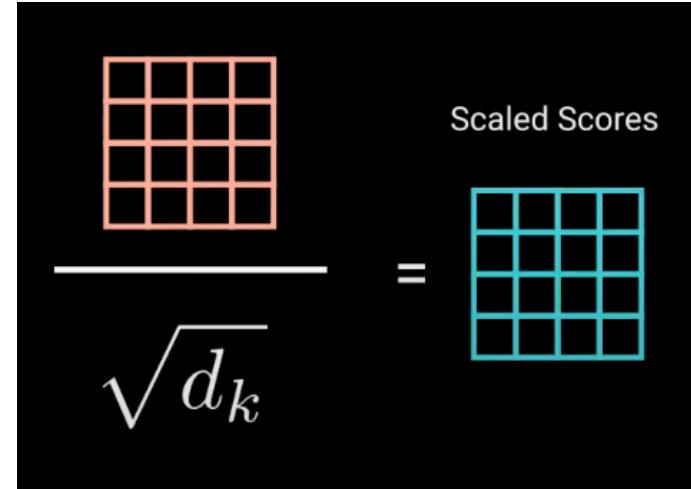
Hi	98	27	10	12
how	27	89	31	67
are	10	31	91	54
you	12	67	54	92



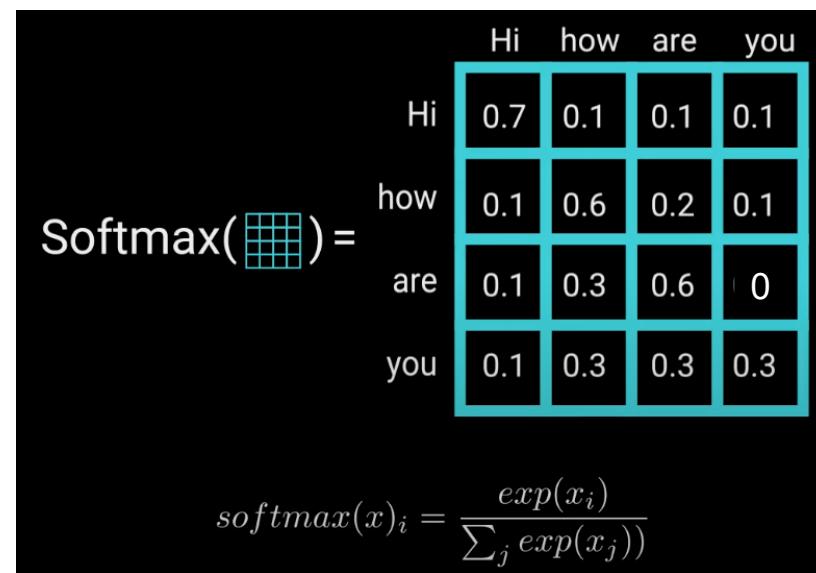
Multi-Head Attention



Multi-Head Attention

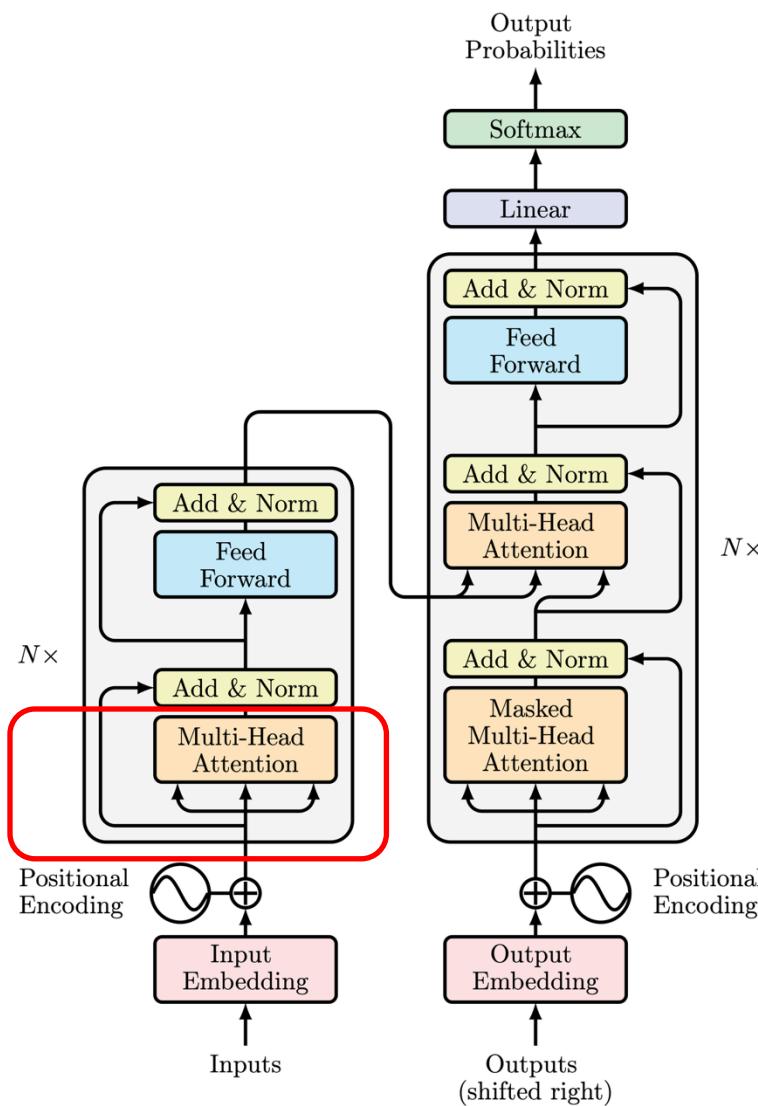
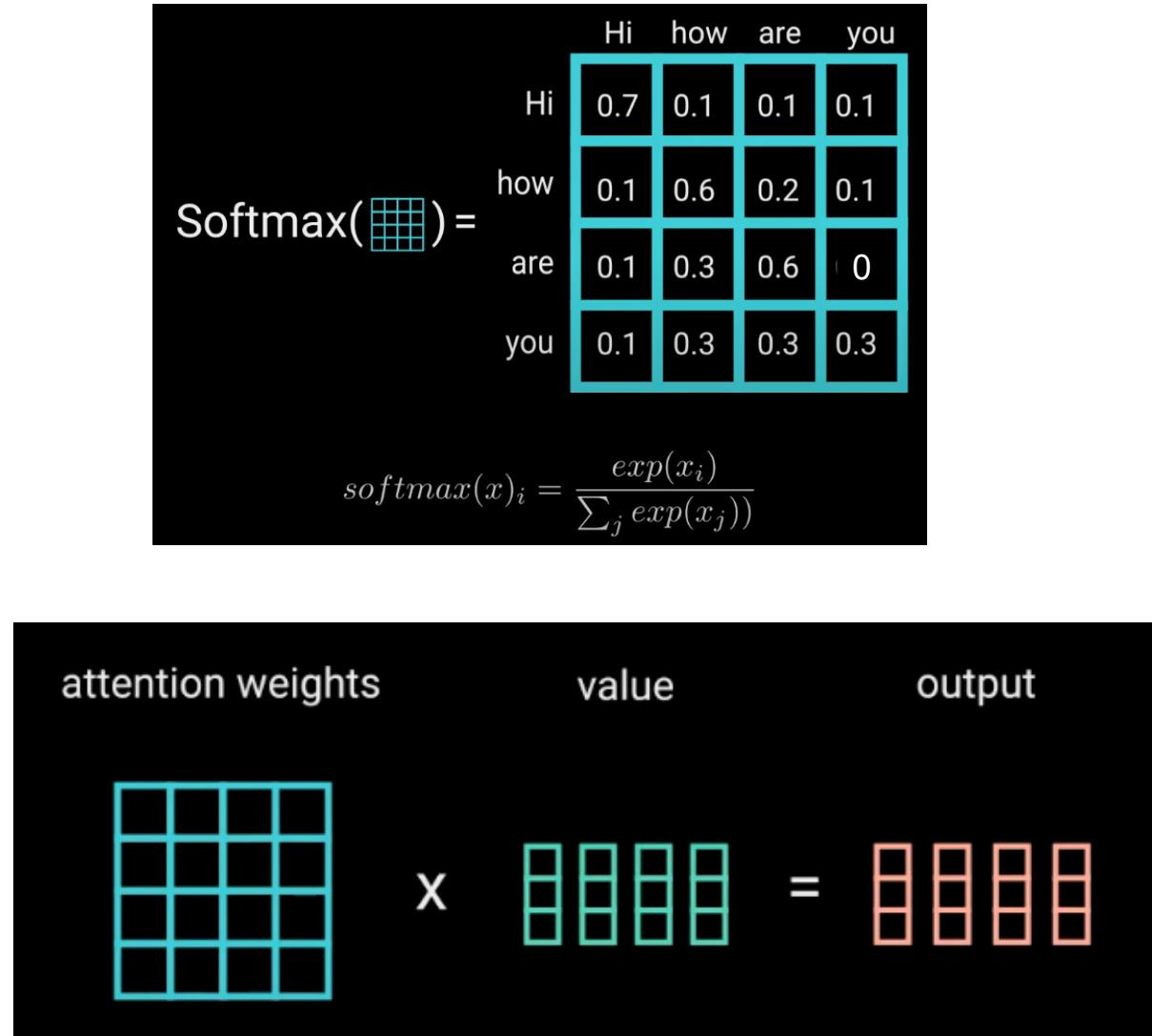


Why square root?

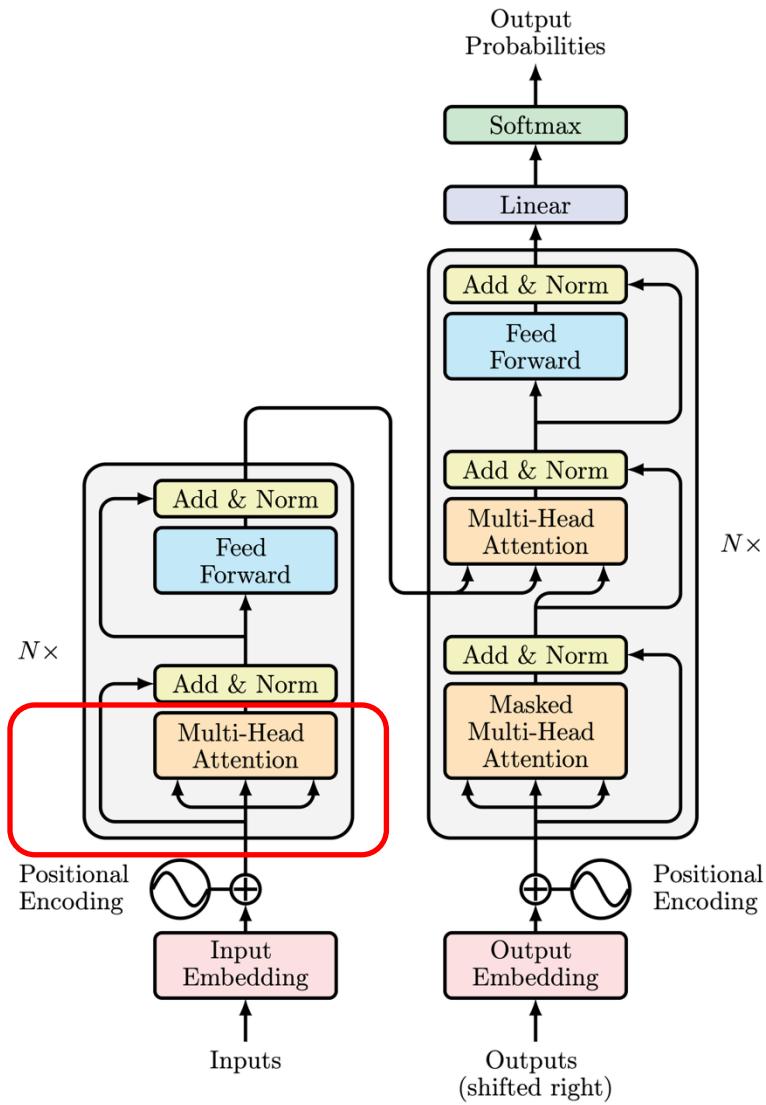
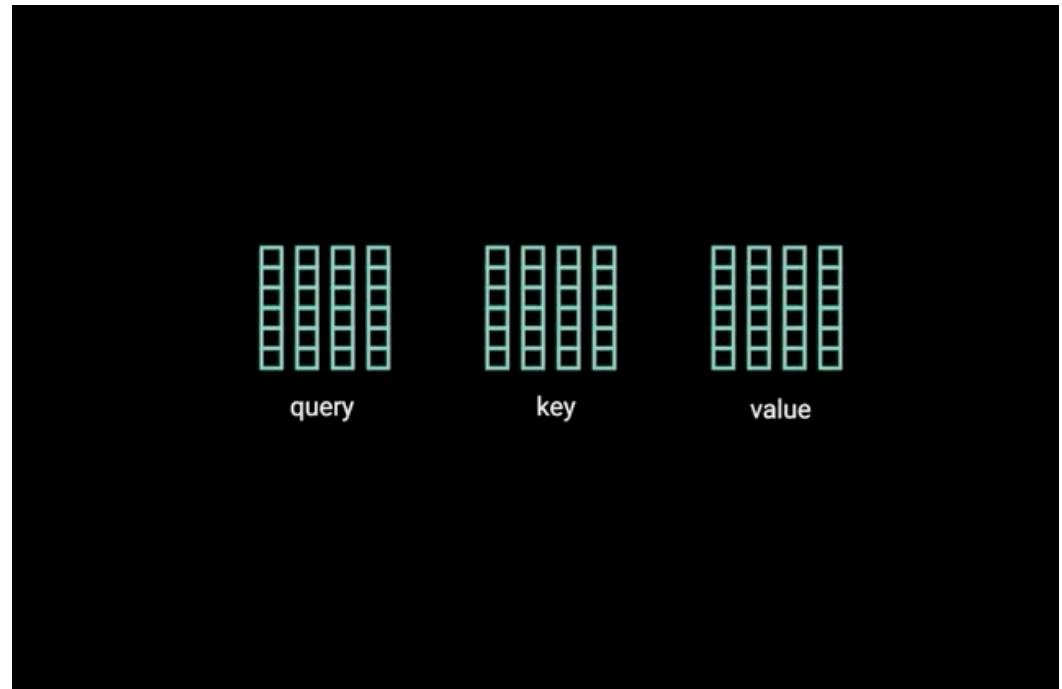


$$\text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

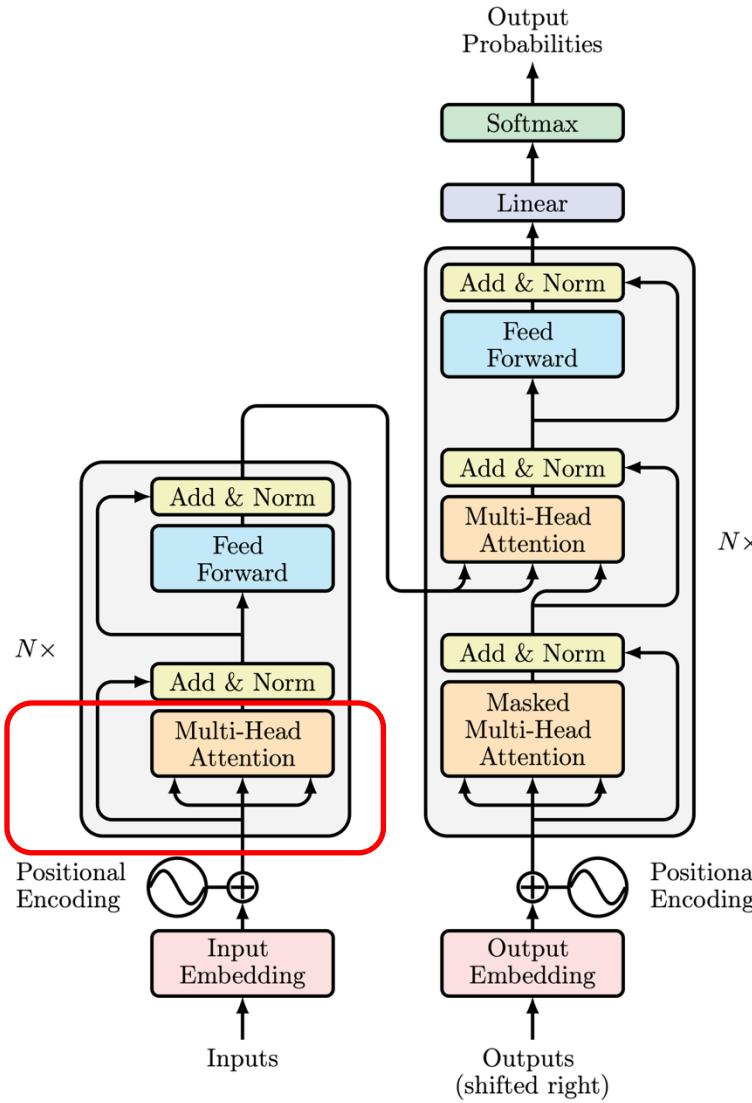
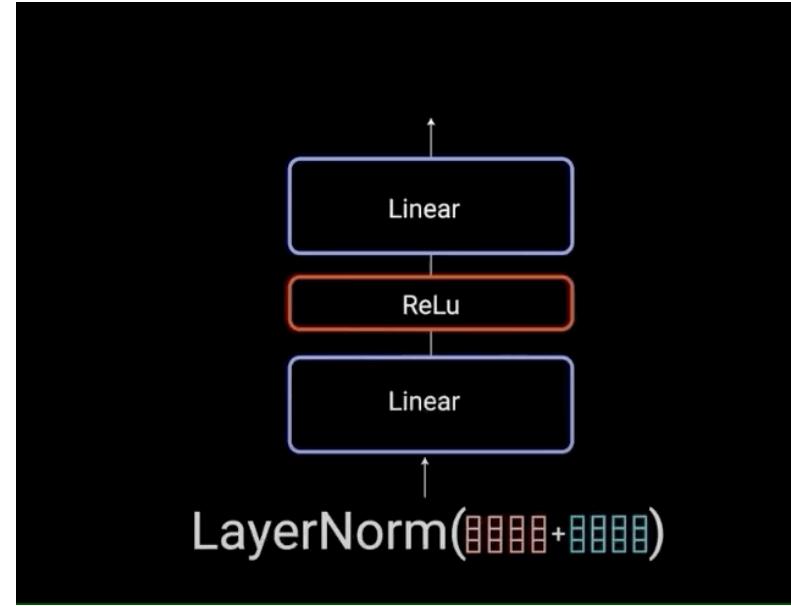
Multi-Head Attention



Multi-Head Attention



Layer Norm [1] & Residual Connection



$$\mu_i = \frac{1}{K} \sum_{k=1}^K x_{i,k}$$

$$\sigma_i^2 = \frac{1}{K} \sum_{k=1}^K (x_{i,k} - \mu_i)^2$$

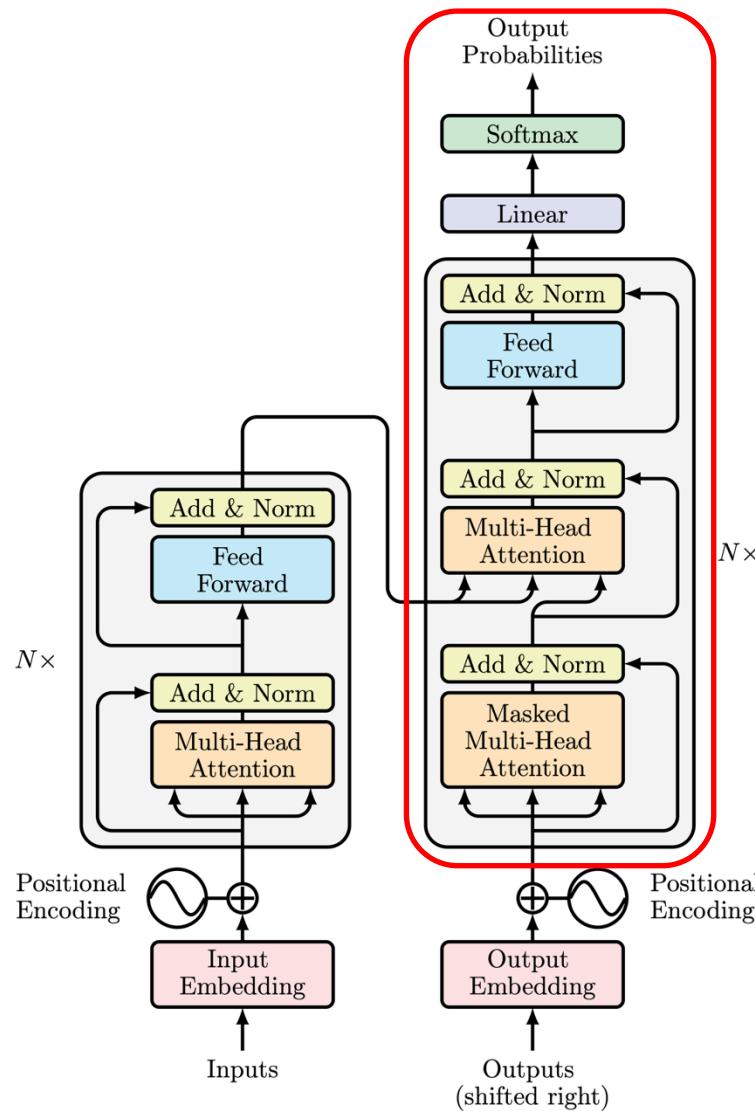
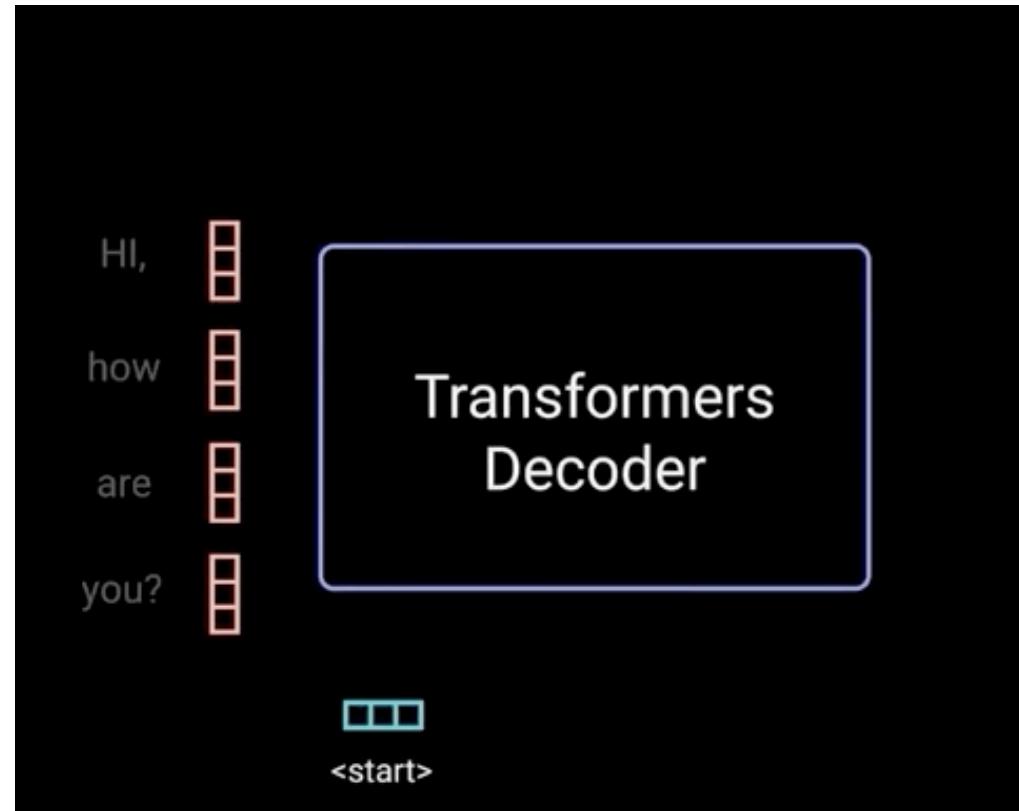
$$\hat{x}_{i,k} = \frac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

$$y_i = \gamma \hat{x}_i + \beta \equiv \text{LN}_{\gamma, \beta}(x_i)$$

[1] Ba, Jimmy Lei. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

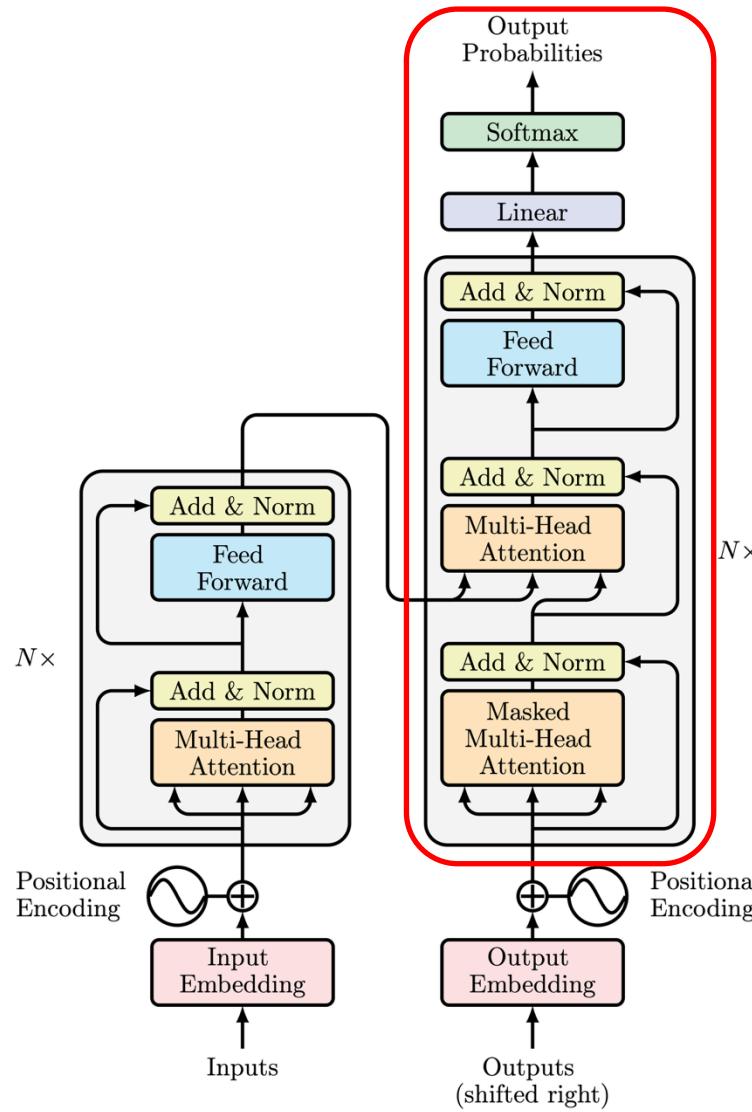
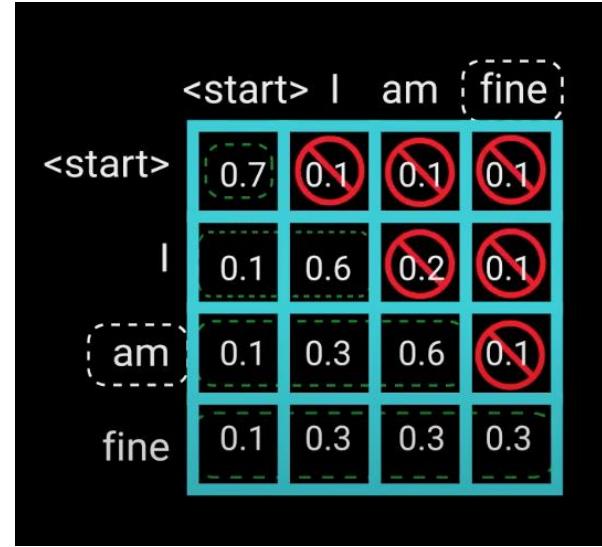
<https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0>

Decoder



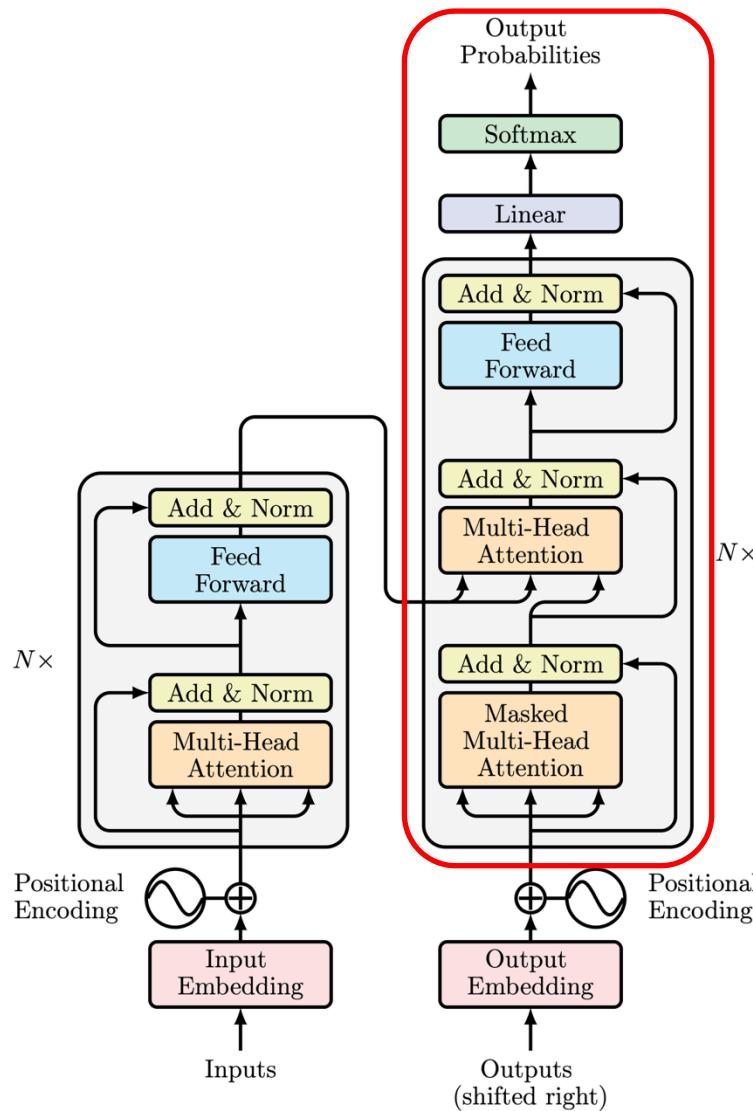
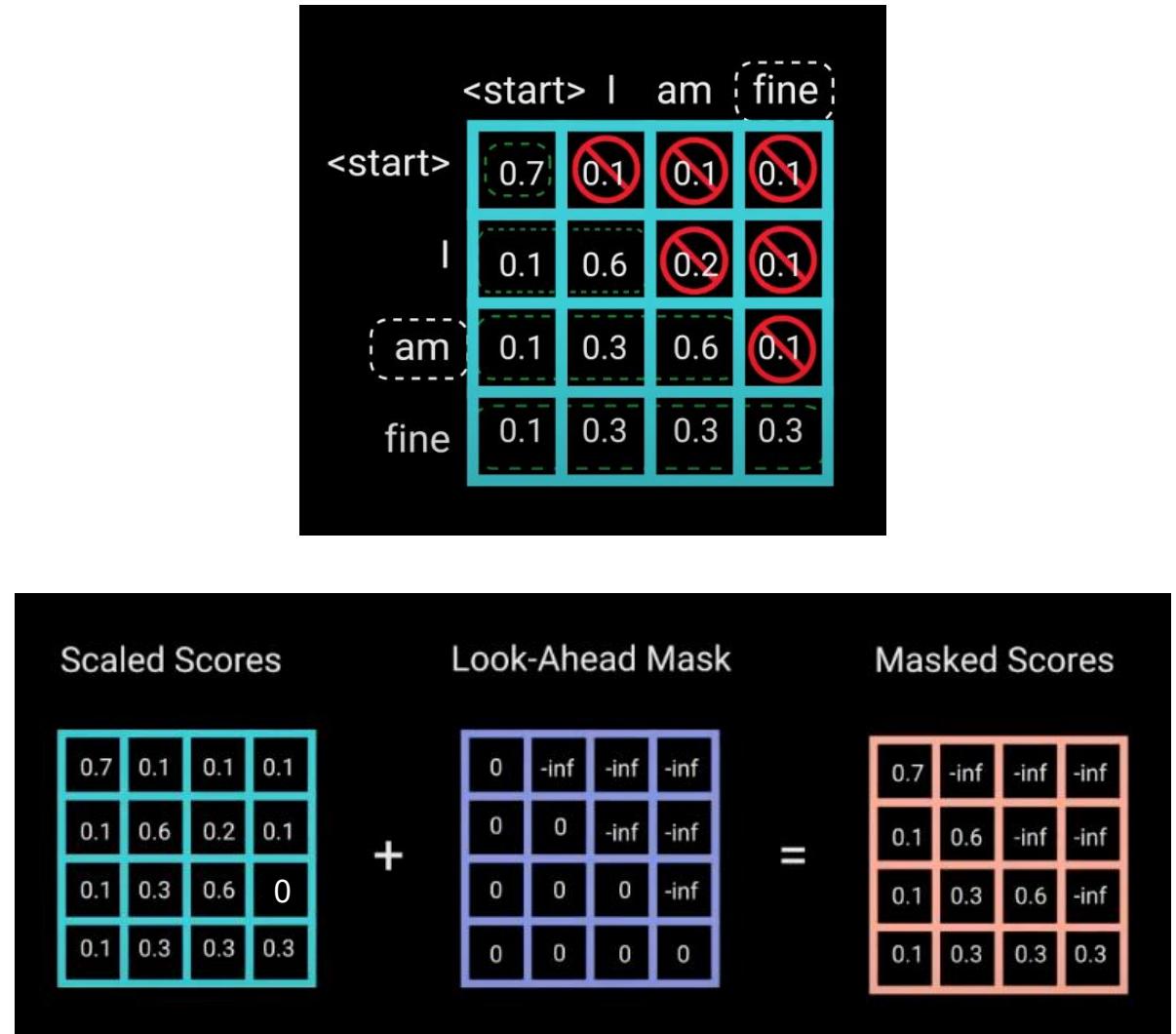
For certain applications like language models, decoder should be autoregressive!

Masked Multi-Head Attention

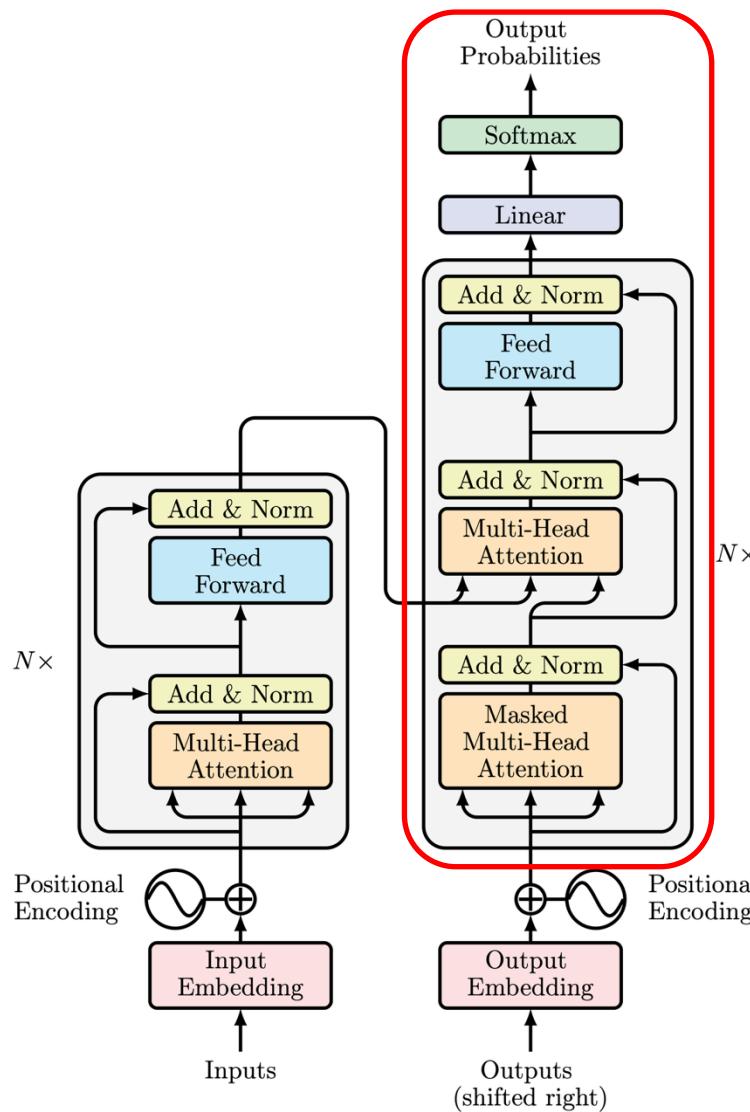
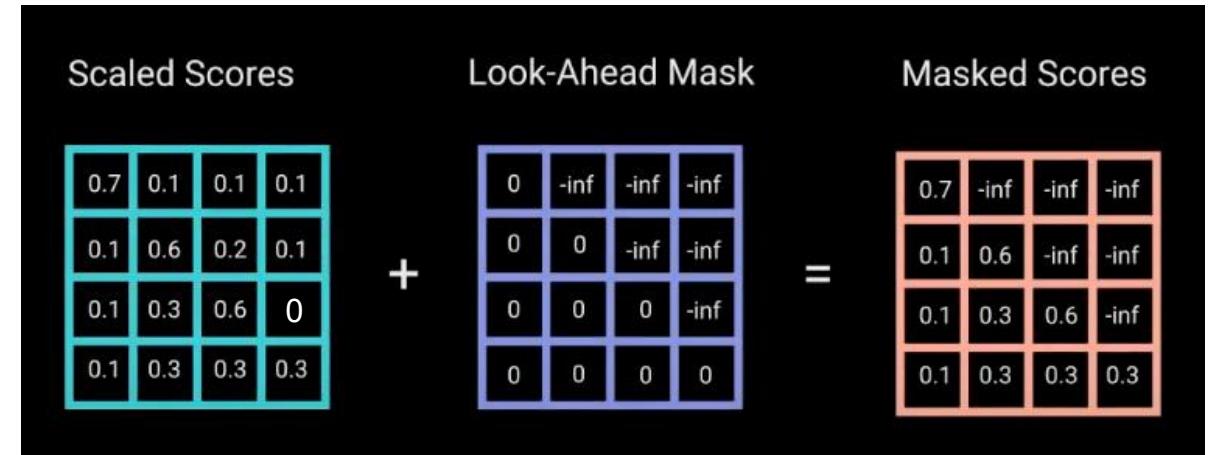
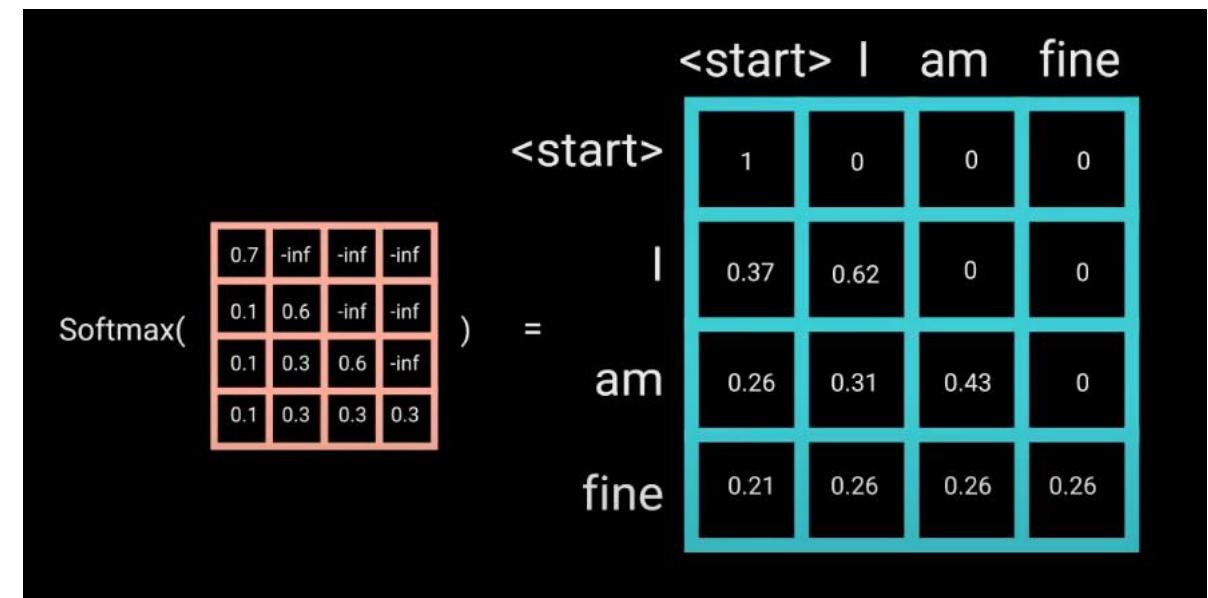


Prevent attending from future!

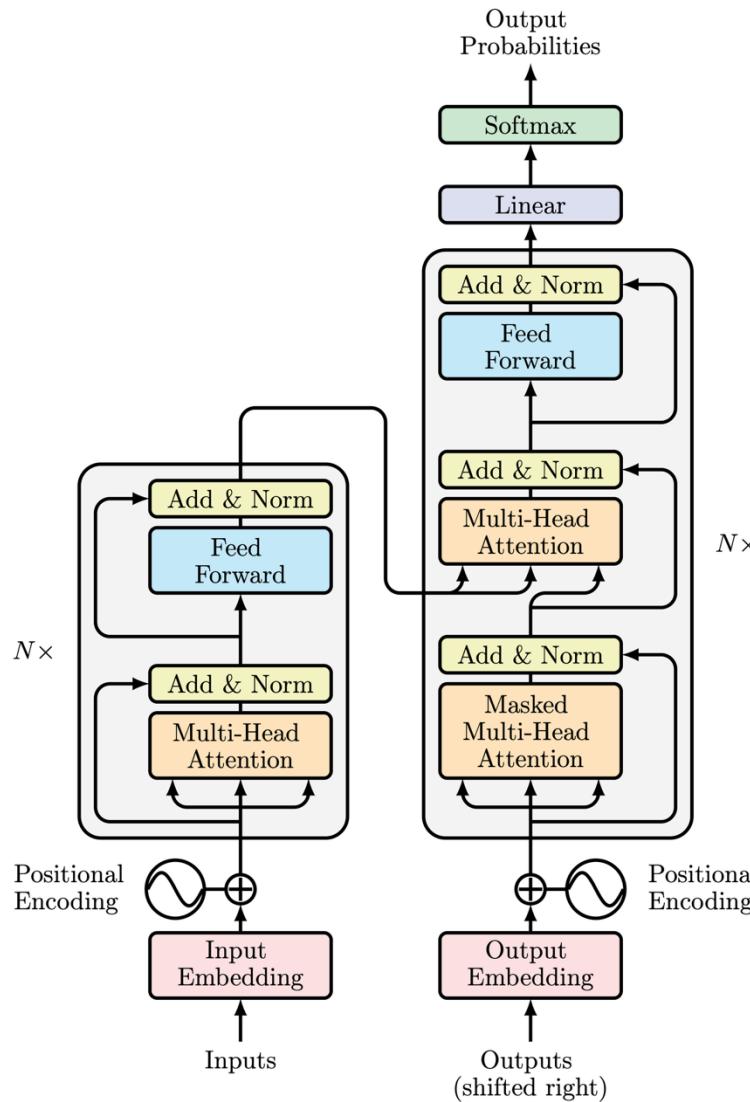
Masked Multi-Head Attention



Masked Multi-Head Attention



Limitations

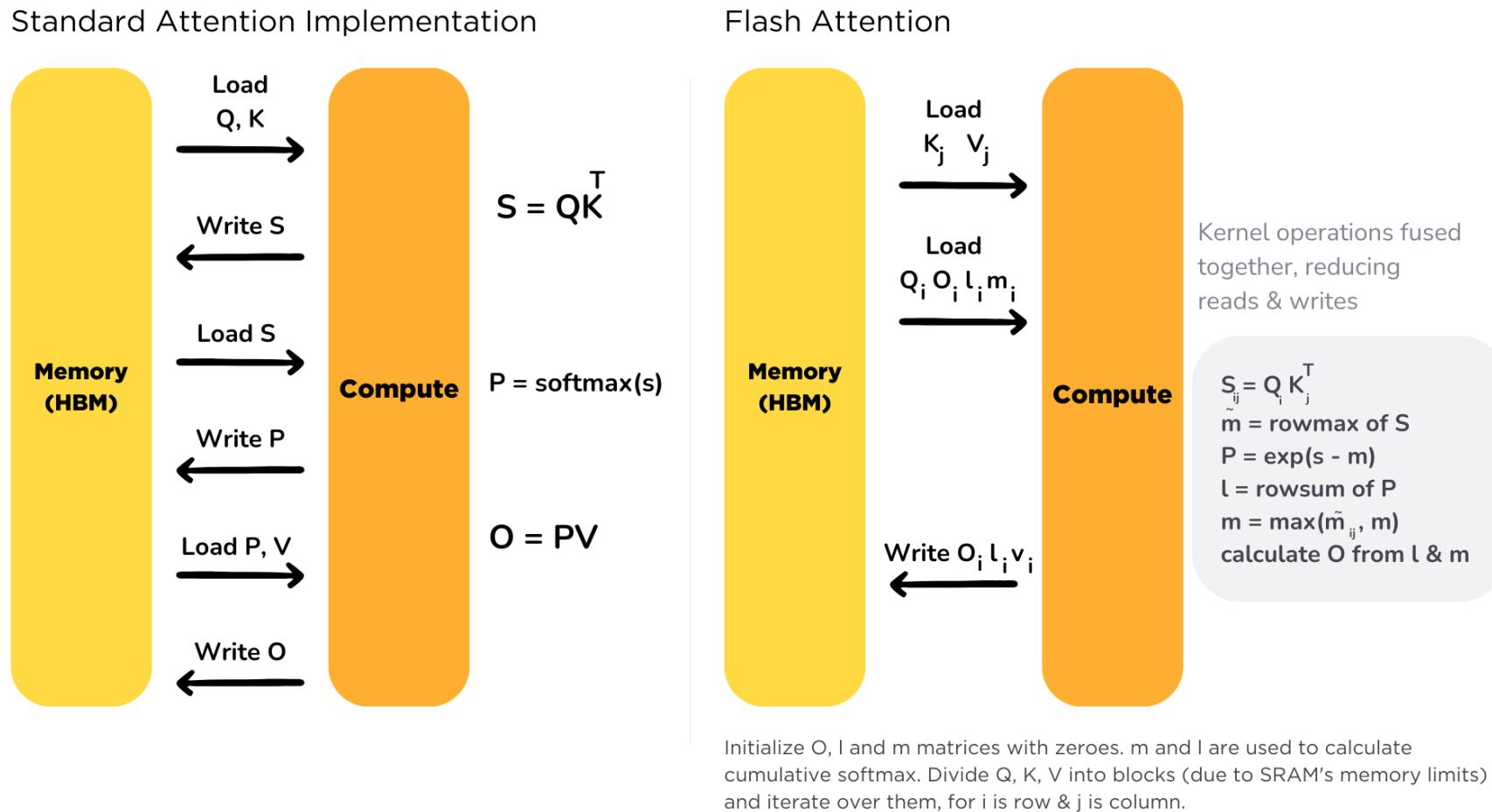


- $O(L^2)$ time/memory cost for self-attention

Methods like Reformer [1] speed up attention to $O(L \log L)$ using locality-sensitive hashing techniques
- How can we incorporate prior knowledge into attention rather than having a fully connected attention?
 - Encourage sparse attention
 - Inject known graph structures
 -

Flash Attention [1]

Flash attention accelerates attention by using on-chip static random-access memory (SRAM, small memory but fast) to reduce the IO with high bandwidth memory (HBM, large memory but slow).

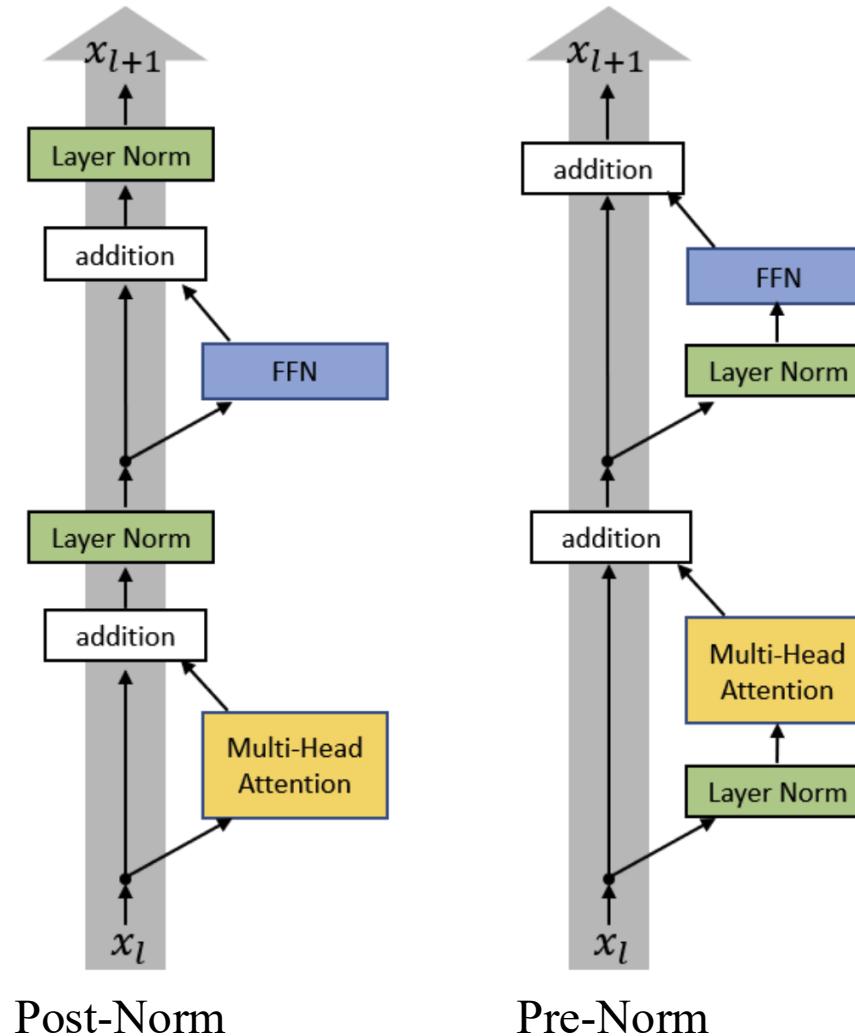


Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - **Pre-norm vs. post-norm**
 - Vision Transformers (ViT) & Swin Transformers

Pre-Norm vs. Post-Norm

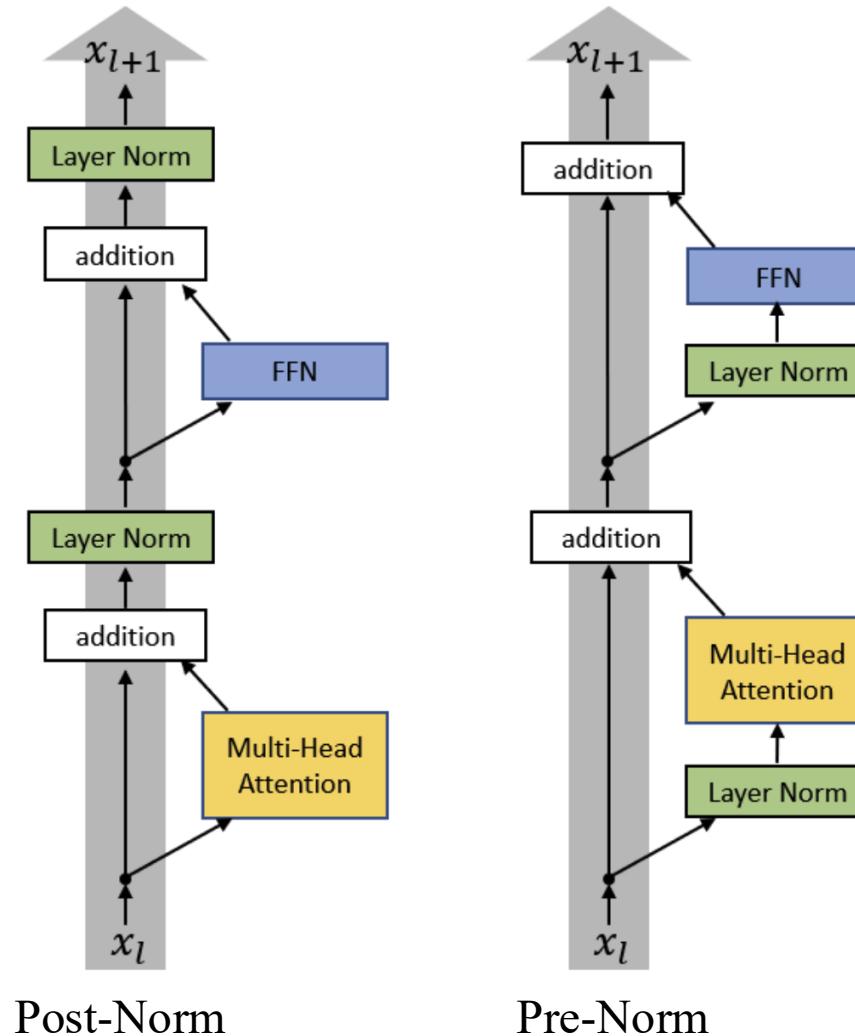
Where to place the Layer Normalization?



Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

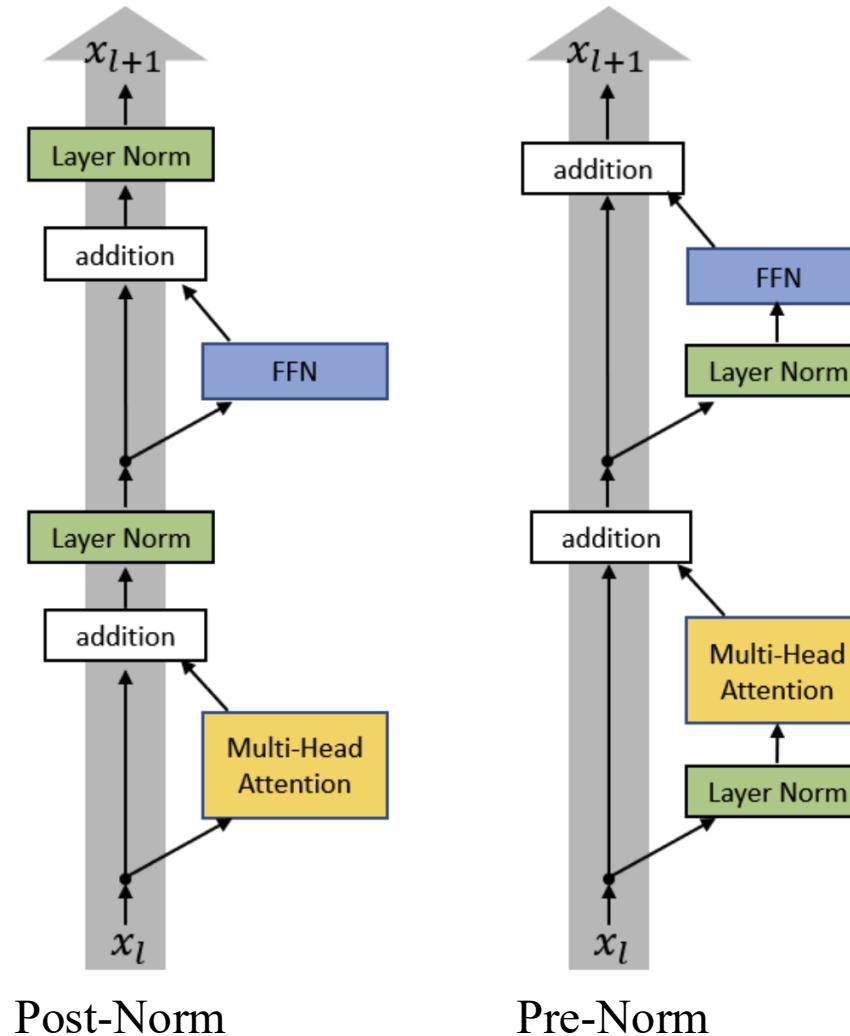
- Gradient norm in the Post-Norm
Transformer is large for parameters near the output and will be likely to decay as the layer gets closer to input



Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

- Gradient norm in the Post-Norm
Transformer is large for parameters near the output and will be likely to decay as the layer gets closer to input
- Training the Pre-Norm Transformer does not rely on the learning rate warm-up stage and can be trained much faster than the Post-Norm



Outline

- Invariance & Equivariance Principle
 - Translation equivariance in convolutions
 - Permutation equivariance and invariance
- Models for Sets
 - DeepSets: representation theorem of permutation-invariant set functions & architecture
 - DeepSets: permutation-equivariant linear mapping & architecture
- Models for Sequences
 - Transformers
 - Positional encoding vs. Rotary Positional Embeddings (RoPE)
 - Attention & Flash Attention
 - Pre-norm vs. post-norm
 - **Vision Transformers (ViT) & Swin Transformers**

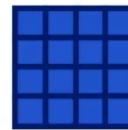
Extensions: Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020. Image Credit: <https://github.com/lucidrains/vit-pytorch>

Extensions: Swin Transformers [1]

Standard MSA

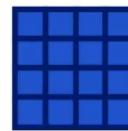
Attention for each patch is computed against all patches,
resulting in quadratic complexity



Extensions: Swin Transformers

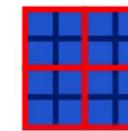
Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity



Window-based MSA

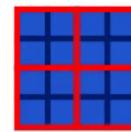
Attention for each patch is only computed within its own window (drawn in red).
Window size is 2x2 in this example.



Extensions: Swin Transformers

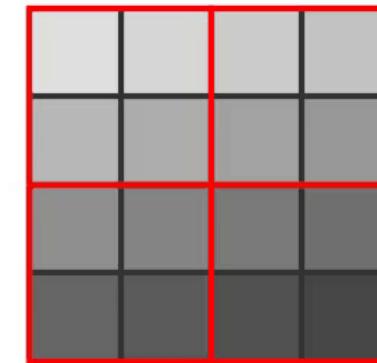
Window-based MSA

Attention for each patch is only computed within its own window (drawn in red).
Window size is 2x2 in this example.



Shifted Window MSA

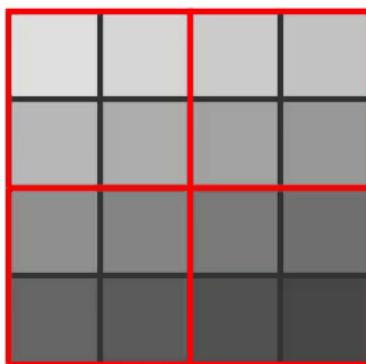
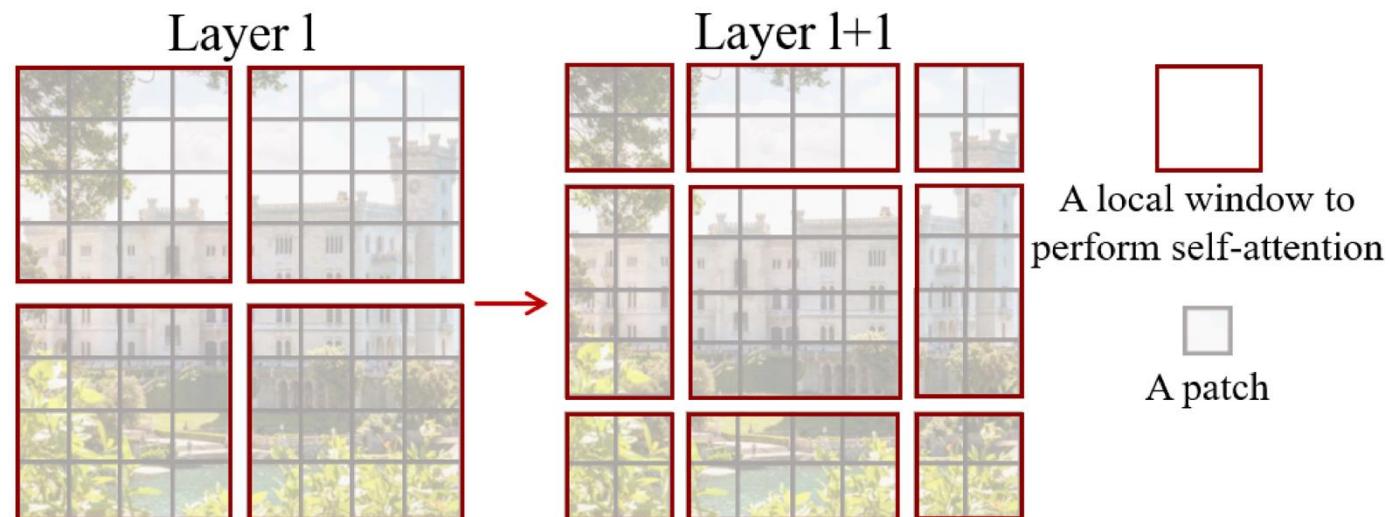
Step 1: Shift window by a factor of $M/2$, where M = window size
Step 2: For efficient batch computation, move patches into empty slots to create a complete window.
This is known as 'cyclic shift' in the paper.



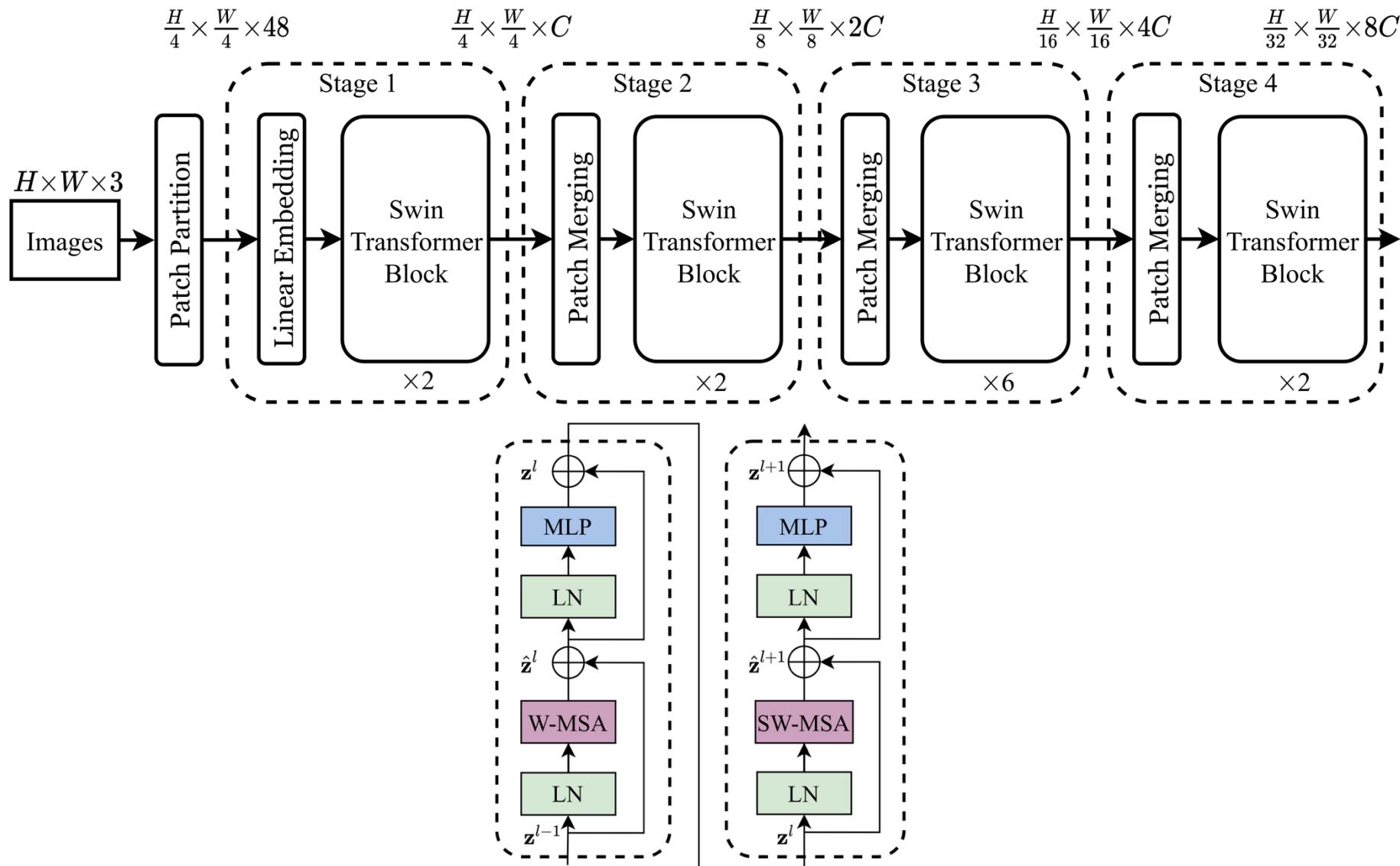
Extensions: Swin Transformers

Shifted Window MSA

Step 1: Shift window by a factor of $M/2$, where M = window size
Step 2: For efficient batch computation, move patches into empty slots to create a complete window.
This is known as 'cyclic shift' in the paper.



Extensions: Swin Transformers



Questions?