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Motivating Applications of Graphs

 Molecules

*  Multi-edges exist
e Nodes have types
* Edges have types

Image Credit: https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica
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Motivating Applications of Graphs

e Social Networks

Link Prediction

Image Credit: https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/
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Motivating Applications of Graphs

* Network-based Recommendations

Food Discovery

Image Credit: https://eng.uber.com/uber-eats-graph-learning/
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Motivating Applications of Graphs

e Citation Networks
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Image Credit: https://www.tudelft.nl/en/library/research-analytics/case-12-citation-networks-2
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Motivating Applications of Graphs

* Phylogenetic Tree
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A phylogenetic tree based on rRNA genes
showing the three life domains

Image Credit: https://en.wikipedia.org/wiki/Phylogenetic_tree
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Motivating Applications of Graphs

* Protein-Protein Interactions (PPIs)
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Image Credit: https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interaction
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Motivating Applications of Graphs

* Epidemic Networks

Link epidemic importance
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Image Credit: https://www.science.org/doi/10.1126/sciadv.aau4212
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* Motivating Applications

* Graph Neural Networks (GNN5s)

* Graph representations

* Graph isomorphism & automorphism

* Challenges of graph data

* Graph Neural Networks (GNNs): history & basics
* Message passing framework of GNNs
 Instantiation of message passing

* Relationship with Transformers



Deep Learning for Graphs

Graph Representations 0
 Connectivity e a
1. Adjacency List: G=(V, E) e

V=1{1234}, E={(1.2), (14), (4.3)}
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Deep Learning for Graphs

Graph Representations 0
 Connectivity e a
1. Adjacency List: G=(V, E) e

2. Adjacency Matrix: A (sometimes we have weights)
V={1,23,4}, E={(1,2),(1,4), (4,3)}

* Feature
1 2 3 4

1. Node Feature: X

2. Edge Feature

W NN e

3. Graph Feature

Graph Data = (A, X)
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Deep Learning for Graphs

Permutation 1 2 3 4
© 1
V=11,2,3,4] => V’'=[2,1,3,4] e 2
E=1[(1,2), (1,4), (4,3)] => E’=[(2,1),(2,4), (4,3)] 9 3
(3) 4

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V=
E:

[1,2,3,4]
[(1,2), (1,4), (4,3)]

=> V’'=[2,13,4]
E*=[(2,1),(2.4),(4,3)]

1 2 3 4

1
2
3
4

Original Adj Matrix

o 1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V=[1,2,34]
E=1[(1,2), (1,4), (4,3)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o 1 2 3 4

— V' =[2,13,4] e 9

A W N R

= E’=[(2,1),(2,4), (4,3)]

V=[1.2,3,4], E=[(1,2), (1,4), (4.3)]
Permute Columns
1 2 3 4 1 2 3 4

H W NN e

1
2
3
4

Original Adj Matrix Transposed
Permutation Matrix



Deep Learning for Graphs

Permutation

V=[1,2,34]
E=1[(1,2), (1,4), (4,3)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V'=[2,13.4]
=> E*=[(2,1),(2,4),(4,3)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix

1 2 3 4

1
2
3
4

Permuted Adj Matrix



Deep Learning for Graphs

Permutation 1 2 3 4
© 1
V=11,2,3,4] => V’'=[2,1,3,4] e 9 2
E=1[(1,2), (1,4), (4,3)] => E’=[(2,1),(2,4), (4,3)] 3
(3) 4

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
& O
e 4

V'=[2,13,4], E’=[(2,1), (2,4), (4,3)]



Deep Learning for Graphs

Permutation
V=[1,2,3,4] => V' =1[2,134]
E=1[(1,2), (1,4), (4,3)] => E’=[(2,1),(2,4), (4,3)]

Graph Isomorphism:

A bijection [ between the vertex sets of G1 and G2 such that any two

vertices u and v of G1 are adjacent iff f(u) and f(v) are adjacent in G2.

PA,P'" = A,

o 1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
& O
e 4

V'=[2,13,4], E’=[(2,1), (2,4), (4,3)]



Deep Learning for Graphs

Permutation 1 2 3 4
© 1
V=11,2,3,4] => V’'=[4,3,2,1] e 2
E=1[(1,2), (1,4), (4,3)] => E’=[(4,3),(4,1),(1,2)] 9 3
(3) 4

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V=
E:

[1,2,3,4]
[(1,2), (1,4), (4,3)]

=> V’=[4,32,1]
E*=[(4,3), (4.1), (1,2)]

1 2 3 4

1
2
3
4

Original Adj Matrix

o 1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V=[1,2,34]
E=1[(1,2), (1,4), (4,3)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o 1 2 3 4

= V' =1[4,32,1] e e

A W N R

== E = [(493)9 (491)9 (192)]

V=[1.2,3,4], E=[(1,2), (1,4), (4.3)]
Permute Columns
1 2 3 4 1 2 3 4

H W NN e

1
2
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4
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Permutation Matrix



Deep Learning for Graphs

Permutation

V=[1,2,34]
E=1[(1,2), (1,4), (4,3)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V'=[432,1]
=> E*=[(4,3), (4,1),(1,2)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix

1 2 3 4

1
2
3
4

Permuted Adj Matrix



Deep Learning for Graphs

Permutation 1 2 3 4
© 1
V=11,2,3,4] => V’'=[4,3,2,1] e 9 2
E=1[(1,2), (1,4), (4,3)] => E’=[(4,3),(4,1),(1,2)] 3
(3) 4

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
o B
Q 4

V’'=[432,1], E’=[(4.3), (4,1), (1,2)]



Deep Learning for Graphs

Permutation
V=[1,2,3,4] => V’'=14,3,2,1]
E=[(1,2),(1,4), (4,3)] => E*=[(4,3), (4,1),(1,2)]
Graph Automorphism:

A permutation o of the vertex set V, such that the pair of vertices (u,v) form
an edge iff the pair (o(u),o(v)) also form an edge.

PAP'" = A

o 1 2 3 4

A W N R

V=[1,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
2
3
4

V’'=[432,1], E’=[(4.3), (4,1), (1,2)]



Deep Learning for Graphs

Permutation Invariance & Equivariance

Graph Data (A, X), Model f(A, X)

Invariance: f(PAPT, PX) — f(A, X)

Equivariance: f(PAPT, PX) — Pf(Aa X)
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* Unordered Neighbors
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Deep Learning for Graphs

Key Challenges:
* Unordered Neighbors

* Varying Neighborhood Sizes
* Varying Graph Partitions

&%
@@am

Pooling
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Deep Learning for Graphs

Graph Neural Networks (GNNs)

* Neural networks that can process general graph structured data

* First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.
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Graph Neural Networks (GNNs)

Neural networks that can process general graph structured data

First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs

Most of GNNs (if not all) can be incorporated by the Message Passing paradigm

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Deep Learning for Graphs

Graph Neural Networks (GNNs)

Neural networks that can process general graph structured data

* First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
* Most of GNNs (if not all) can be incorporated by the Message Passing paradigm

* GNNs have been independently studied in signal processing community under Graph Signal Processing

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Deep Learning for Graphs

Graph Neural Networks (GNNs)

* Neural networks that can process general graph structured data

* First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
* Most of GNNs (if not all) can be incorporated by the Message Passing paradigm
* GNNs have been independently studied in signal processing community under Graph Signal Processing

* The study of GNNs for geometric processing are also called Geometric Deep Learning

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.
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Graph Neural Networks (GNNs)

1. Node Feature
» Ifitis unavailable, use 1-of-K, random, index/size encoding of node index)

2. Edge Feature

» Feed it to message network

3. Graph Feature
» Treat it as a super node in your graph
* Feed graph feature to readout layer

Input Encoding
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Input Encoding Message Passing Layers/Steps




Graph Neural Networks (GNNs)

Message o
Passing } o

= [ Message ] B @

Passing

Input Encoding Message Passing Layers/Steps

Steps: share message passing module (Recurrent Networks)
Layers: do not share message passing module (Feedforward Networks)




Graph Neural Networks (GNNs)

Message o
Passing } o

:> [ Message

Passing

Input Encoding Message Passing Layers/Steps [ Node/Edge/Graph }
Readout

Predictions



Outline

* Motivating Applications

* Graph Neural Networks (GNN5s)

* Graph representations

* Graph isomorphism & automorphism

* Challenges of graph data

* Graph Neural Networks (GNNs): history & basics
* Message passing framework of GNNs
 Instantiation of message passing

* Relationship with Transformers



Message Passing in GNNs

h; Node State

(t+1)-th message passing step/layer




Message Passing in GNNs

h! hj ' Node State

% Message Network

(t+1)-th message passing step/layer



Message Passing in GNNs

l Node State

Message Network
l Compute

Messages

(OO0} Message

(t+1)-th message passing step/layer




Message Passing in GNNs

l Node State

Message Network
l Compute

Messages

BOQ) Message

Aggregated Message

(t+1)-th message passing step/layer




Message Passing in GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

m! = [ ({ml]j € Ni})|  EXXD  Aggregated Message




Message Passing in GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

mf = fue ((m!,j € N'})|  @XXD  Agoregated Message | [N




Message Passing in GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Messages
t t 1t
m; = fmsg(hj, hj) Message

Aggregated Message le0e@

State Update Network %

ﬁ’lf — fagg ({m;lb < M})

% Message Network
l Compute

[elele)

(e/o/0}

4




Message Passing in GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Message Network

Compute
Messages

m’; = fmsg(h}, h) Message

J

Aggregated Message

M = fagg ({mj;|j € N;}) le0e@
State Update Network %
l Update
(ele70)

Representation

f Bl B B

hi ™ = fupdate(hj, m;) Updated Node State




Message Passing in GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Message Network

Compute
Messages
m’; = fmsg(h}, h) Message
m! = [ ({ml]j € A)) Aggregated Message | (XX

State Update Network

Update
Representation

f Bl B B

hi ™ = fupdate(hj, m;) Updated Node State




Message Passing in GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m’; = fmsg(h}, h) Message
M = fuge ({mi]j € A7) Aggregated Message | (XD

State Update Network

Update
Representation

R

hi ™ = fupdate(hj, m;) Updated Node State

e Parallel Schedule!




Message Passing in GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m’; = fmsg(h}, h) Message
M = fuge ({mi]j € A7) Aggregated Message | (XD

State Update Network
Update
Representation

Updated Node State

R

h;H_l - fupdate (hf, ﬁ’lf)

* Parallel Schedule!
* Other schedules [1] are possible and could
improve performance in certain tasks!

[1] Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A.L., Urtasun, R. and Zemel, R., 2018. Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272.
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Message Passing in GNNs

Instantiations:
1. Compute Messages

mﬁz = fmsg(ht' ht)

3o

2. Aggregate Messages

I’YI;t — fagg ({m§z|9 < M})

3. Update Node Representations

h?—l - fupdate(hga mt)

(4



Message Passing in GNNs

Instantiations:

1. Compute Messages

mgz — fmsg(hg'v hf)

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017.

fmsg(hj, hj) = MLP([hj, hi])



Message Passing in GNNs

Instantiations:
1. Compute Messages fmsg(h’, ht) = MLP([h’, hi]) 1
mj; = frnsg (0}, bj) fmsg (0], h;) = ] 2]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
20109.



Message Passing in GNNs

Instantiations:
1. Compute Messages fmsg(h’, ht) = MLP([h’, hi]) 1
mj; = frnsg (0}, bj) fmsg (0], h;) = ] 2]

fmsg(h§7h§7eji) - MLP([hgvhﬁveji]) [1]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
20109.



Message Passing in GNNs

Instantiations:
1. Compute Messages fmsg(h}, ;) = MLP([h}, hi]) [1]
', = foeg (B, 1) P (B ) = 2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
20109.



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
', = Fong () ) Fos (1 1) = I 2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m§i|j €Ni}) = D jen, My [1,2,4]

1’?1;t — fagg ({m§z|9 < M})

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
;= g, ) P (1, ) = 2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m§i|j €Ni}) = D jen, My [1,2,4]
t|j ) = L § t
mf = fagg ({m§z|9 S M}) Jasg ({mjib < M}) [Nl ZJENi 1M [3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
mj; = frusg (b, hj) fmsg(hj, hi) = b 2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m§i|j €Ni}) = D jen, My [1,2,4]
CLieNY) = LSS mt
mf = fagg ({m§z|9 S M}) Jags ({mjib < M}) | Nl ZJENi 1M [3]
fagg ({mzz‘j < M}) = MaX;eN; m§'¢ [3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
mj; = frusg (b, hj) fmsg(hj, hi) = b 2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m§i|j €Ni}) = D jen, My [1,2,4]
0] = fage ({m]j € Ni}) s ({mSili € M) = g Zje, mls [3]
fagg ({mzz‘j < M}) = MaX;eN; m§'¢ [3]
fage <{m§z|J S M}) = LSTM ([mﬁz‘J € M]) [3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing in GNNs

Instantiations:

l.

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.

Compute Messages

mj; = finsg(hj,hy)

Aggregate Messages

1’?1;t — fagg ({m§z|9 < M})

Update Node Representations

h?—l - fupdate(hgv mt)

(4

fmsg(hz'a hf) — h;
fs (0, 1 [e:) = MLP ([, b e;.])
Edge Feature

fage ({7 € Ni}) =30 e, mb;

fage ({mf;]7 € Ni}) = Ry Xjen, M
fage ({

fage ({

mz'i‘j S M}) = mMax;enN; m§i
m

jili € Ni}) = LSTM ([mj;|j € Ni])

fupdate (hfv mf) — GRU(hfa ﬂ’lf)

[1,2,4]
3]
3]
3]

[1,4]



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
', = fong( ) fues(1, 1) = b 2
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m§i|j €Ni}) = D jen, My [1,2,4]
m! = fage ({mf;]j € N;}) faze (15 € Ni}) = (7 2 e, 103 [3]
7 a 71 1
fagg ({mzz‘j < M}) = MaX;eN; m§'¢ [3]
fage <{m§z|9 < M}) = LSTM ([mﬁz\J € M]) [3]
3. Update Node Representations fupdate(h?, m!) = GRU(h?, m?) [1,4]
W ) Fupao(bl, mf) = MLPy () + MLPo(m()  [2]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing in GNNs

Instantiations:
1. Compute Messages fumsg(hj, h7) = MLP([h}, hi]) [1]
m'; = fuueg (bl h) fmsg (g ) = by [2]
fmsg(h§7h§7[£ — MLP([hgvhﬁveji]) [1]
Edge Feature
2. Aggregate Messages fage ({m jili € Ni }) = 2 jen;: g [1,2,4]
t
! = fuss ({15 € AG}) Foas (105117 € L)) = 2o ]
fagg( ‘] EN}) — MaXjeN; m [3]
fage ({m Gild € Ni}) = LSTM ([mji‘j e Nj]) [3]
3. Update Node Representations fupdate(h?, m!) = GRU(h?, m?) [1,4]
ht-+1 _ fupdate(ht'a mt) fupdate<ht z) MLPl(ht) + MLP2( ) [2]
fupdate (h}, mf) = MLP([hj, m]) 3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Readout in GNNs

Instantiations:

1. Node Readout

yY: = freadout (h?>

2. Edge Readout

Yij — freadout(h;‘ra h}yr)

3. Graph Readout

y = freadout({hq,T})



Readout in GNNs

Instantiations:

1. Node Readout

Y: = freadout (h?> freadout (h;r) — MLP(h;T)



Readout in GNNs

Instantiations:

1. Node Readout

yY: = freadout (h;r>

2. Edge Readout

Yij — freadout(h;'ra hj‘?r)

freadout (h;r) — MLP(h?>

freadout(hzTa hf) — MLP([hzTa hfyr])

Freadout (T, h?,@ = MLP([h] , hT, e;])
Edge Feature




Readout in GNNs

Instantiations:

1. Node Readout

Y: = freadout (h?> freadout (h;r) — MLP(h?)

2. Edge Readout
freadout(h;r7 hf) — MLP([hzTa hg_’])

Freadout (DT, h?,@ = MLP([h] , hT, e;])

Edge Feature

Yij — freadout(h;'ra hj}r)

3. Graph Readout

freadout({h?}) — Zz O(MLpl(h?))MLPQ (h?)
y = freadout({hzT})

freadout ({h;p} g) — Zz U(MLPl (hfa g))MLPQ (hq,Ta g)
Graph Feature




Implementations

1. Although graph could be very sparse, we should maximally exploit dense operators since
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!



Implementations

1. Although graph could be very sparse, we should maximally exploit dense operators since
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!

Tips:
* Use adjacency list representation
* Compute messages for all edges in parallel
« Compute aggregations for all nodes in parallel

« Compute updates for all nodes in parallel
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Relationships with Transformer

Output
Probabilities

g N\
Add & Norm

Feed
Forward
y 3
( ) I
- \ (Add & Norm J+— A
( /—>| Add & Norm l Embedd|ng
Multi-Head
Feed Attention N x
Forward L A J ) J A A A A
F 3 ; I
e — : | ! j
Nx Add & Norm l | . |
/—Fl Add & Norm l I ! ’ ‘
Masked .
Multi-Head Multi-Head Hi how are you
Attention Attention
F 3 y 3
=) (==
Positional '9 G_ Positional
Encoding y C Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Relationships with Transformer

Output
Probabilities

Scaled Scores

e a
Add & Norm
Feed
Forward
y 3
J
e ~\ l Add & Norm |<ﬂ
/—>| Add & Norm l :
Multi-Head
Feed Attention Nx )
Forward T 5 Hi how are you
F 3
— .
m Norm Mashod
aske
NS P 1 1 o 1
Attention ttention S Of.tm a X( @ ) -
* F 3 } & y 3 }

Positional _9 G' Positional
Encoding ; - Encoding you § 0.1 803 § 0.3 §0.3
Input Output

Embedding Embedding
Inputs Outputs softmax(x);

(shifted right)

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Relationships with Transformer

Output
Probabilities

* Attention can be viewed as the weighted
adjacency matrix of a fully connected graph!

g N\
Add & Norm
Feed
Forward
y 3
J
4 R | Add & Norm |<ﬂ
/—>| Add & Norm l
Multi-Head
Feed Attention N x '
Forward T 5 Hi how are you
F 3
— .
m Norm Masked
aske
Y, iy how m
Attention ttention S Of.tm a X( @ ) -

\——— Y, \_ — ) are § 0.1 §0.3 0.1

Positional Positional

poel O Q) foine you
Input Output

Embedding Embedding
Inputs Outputs .'i(_lf f.”.’.(l'.l'(:.l'.) i

(shifted right)

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Relationships with Transformer

f
/—>| Add & l

~
Norm
Feed
Forward

Output
Probabilities

g N\
Add & Norm

Feed

Forward

7 3

—

l Add & Norm |<ﬂ

Multi-Head
Attention Nx
3 4+ 3
F 3
—
Nx Add & Norm
Add & Norm
Masked
Multi-Head Multi-Head
Attention Attention
o / \ —JJ
Positional '9 G_ Positional
Encoding y C Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

* Attention can be viewed as the weighted
adjacency matrix of a fully connected graph!

* Transformers (esp. encoder) can be viewed as
GNNs applied to fully connected graphs!

Hi how are vyou

[ oo Tor
vou [ 01 Joe Joz Jor
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Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Encode Graph Structures in Transformers

* Apply the adjacency matrix as a mask to the attention and renormalize it, like Graph
Attention Networks (GAT) [1]

* Encode connectivities/distances as bias of the attention [2]
» Systematic investigation of various designs for graph Transformers [3]
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[1] Velickovi¢, Petar, et al. "Graph attention networks." ICLR. 2018. [2] Ying, Chengxuan, et al. "Do transformers really perform badly for graph representation?." NeurlPS. 2021. [3] Rampasek,
Ladislay, et al. "Recipe for a general, powerful, scalable graph transformer." NeurlPS. 2022.

Image Credit: https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Questions?
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