

EECE 571F: Advanced Topics in Deep Learning

Lecture 3: Graph Neural Networks I Message Passing Models

Renjie Liao

University of British Columbia
Winter, Term 2, 2025

Outline

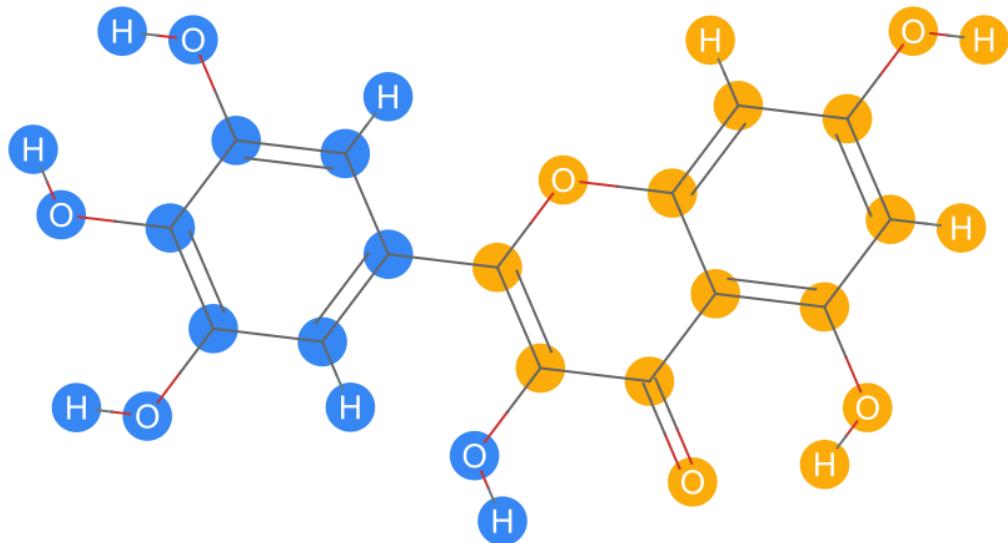
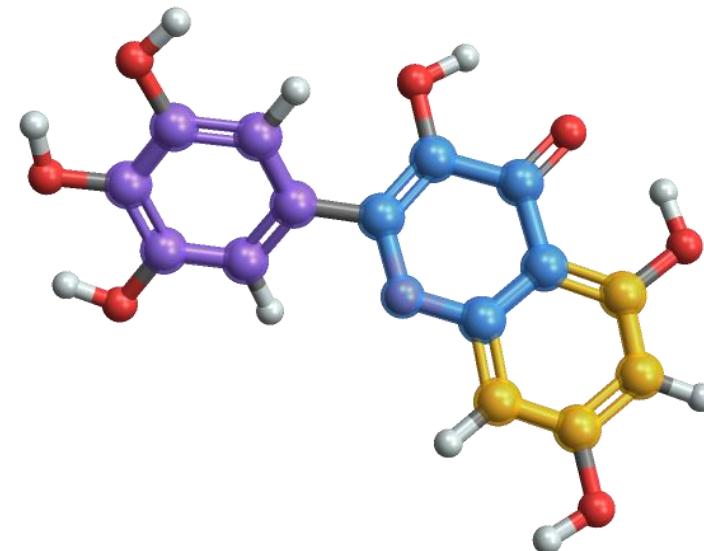
- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Outline

- **Motivating Applications**
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Motivating Applications of Graphs

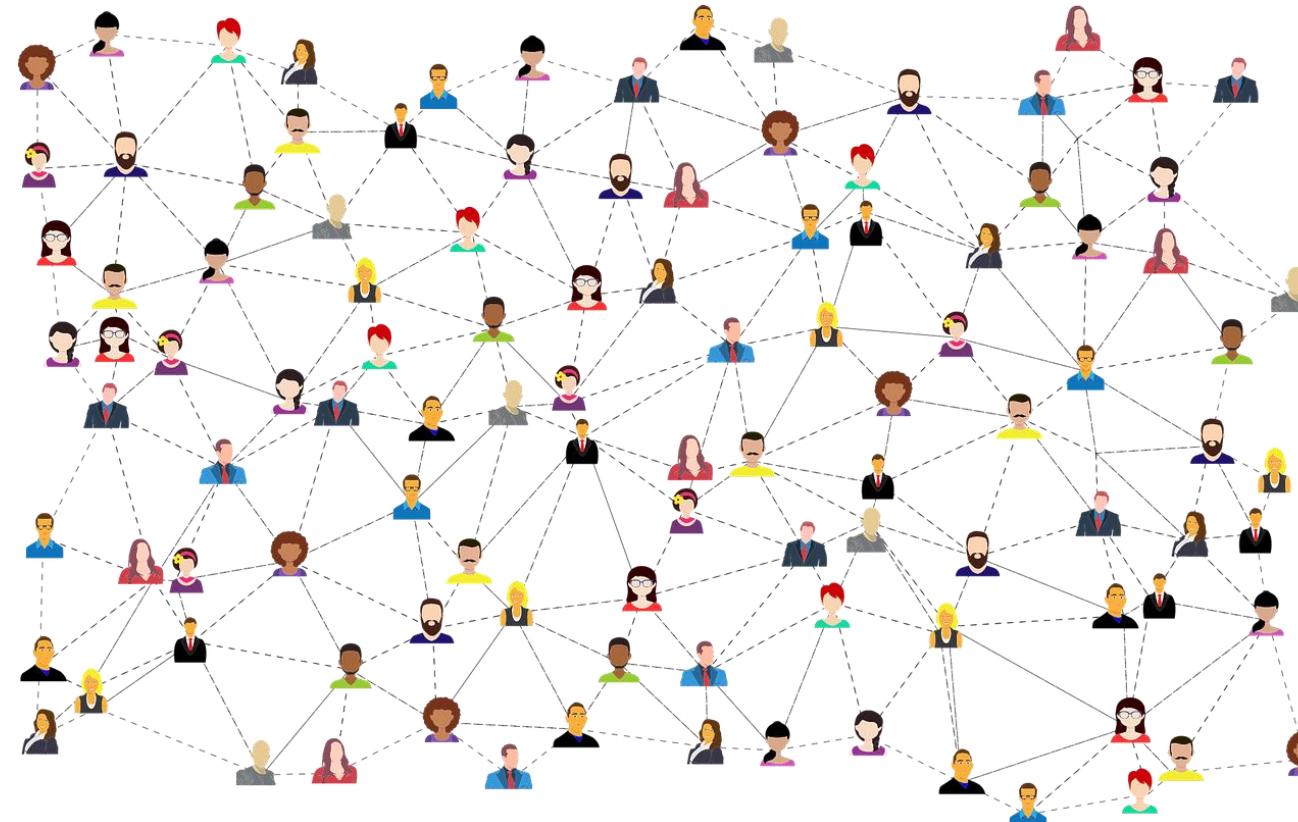
- Molecules



- Multi-edges exist
- Nodes have types
- Edges have types

Motivating Applications of Graphs

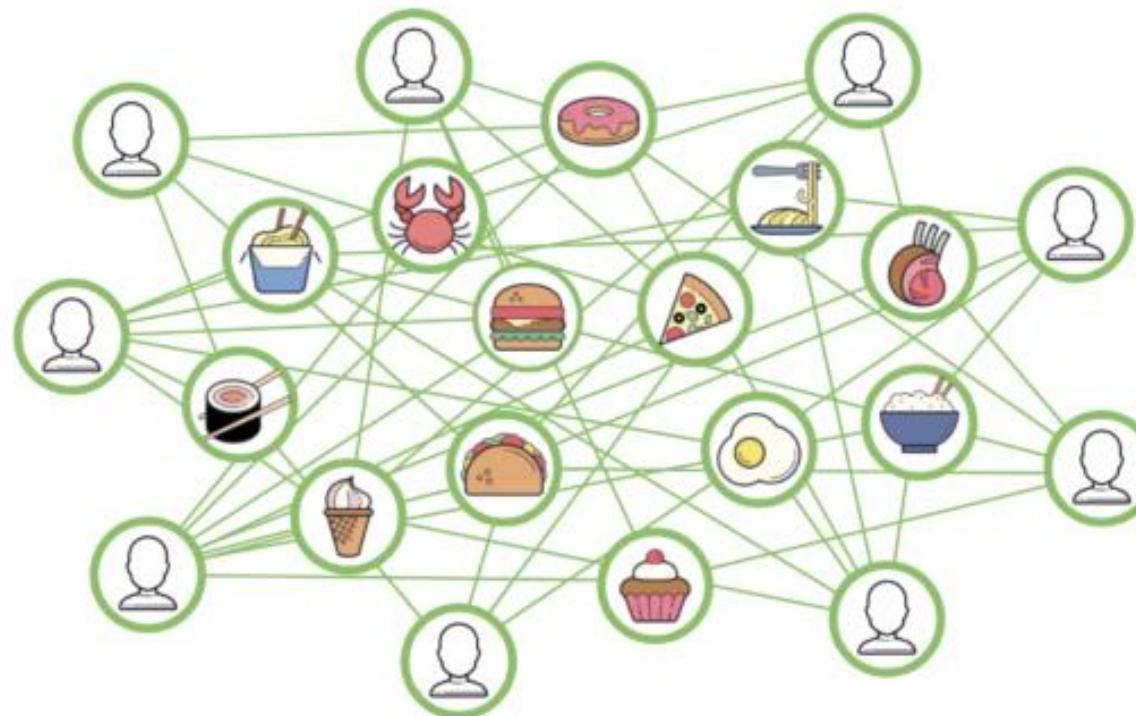
- Social Networks



Link Prediction

Motivating Applications of Graphs

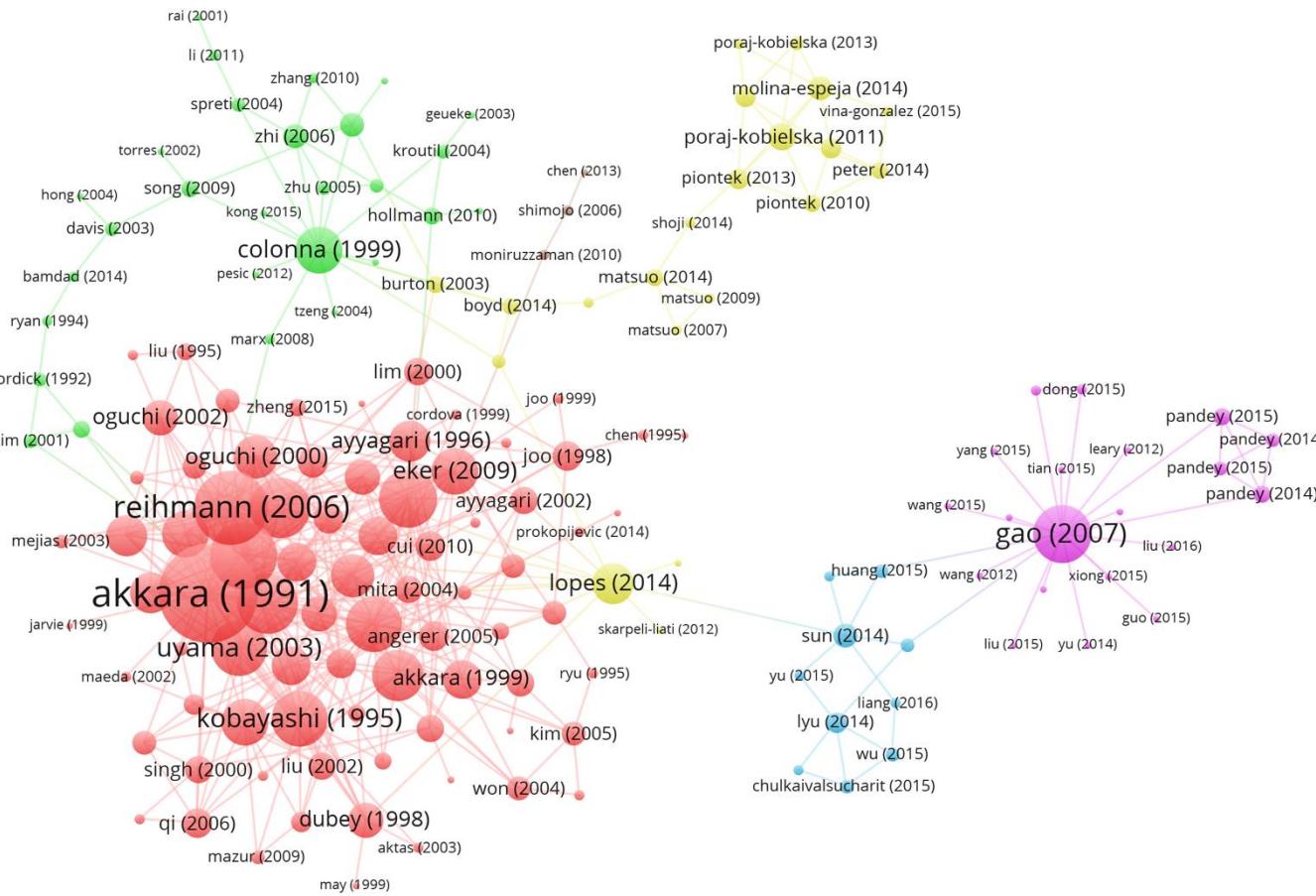
- Network-based Recommendations



Food Discovery

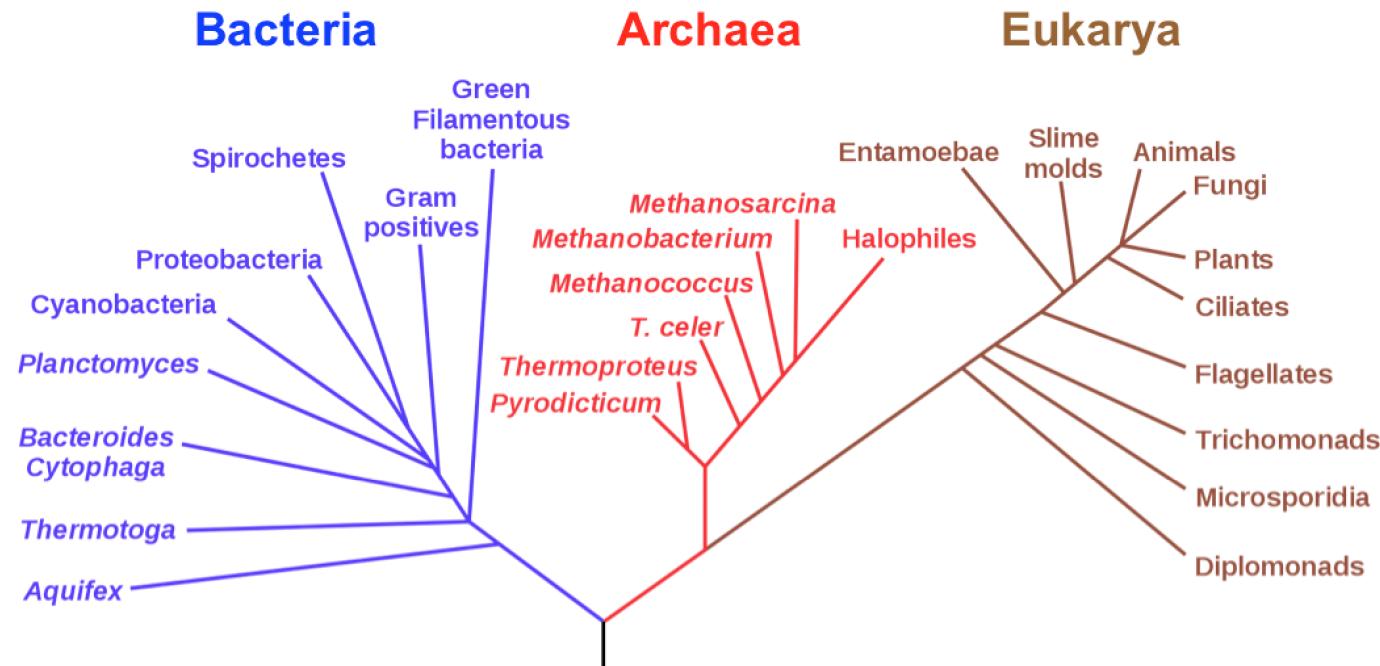
Motivating Applications of Graphs

- Citation Networks



Motivating Applications of Graphs

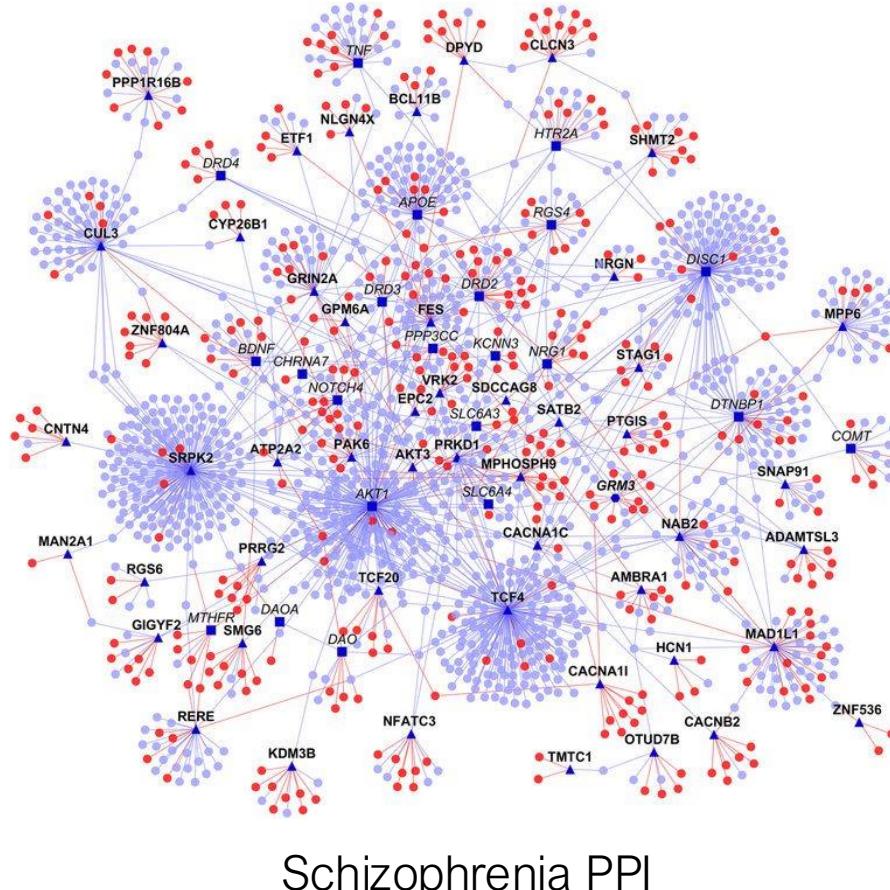
- Phylogenetic Tree



A phylogenetic tree based on rRNA genes
showing the three life domains

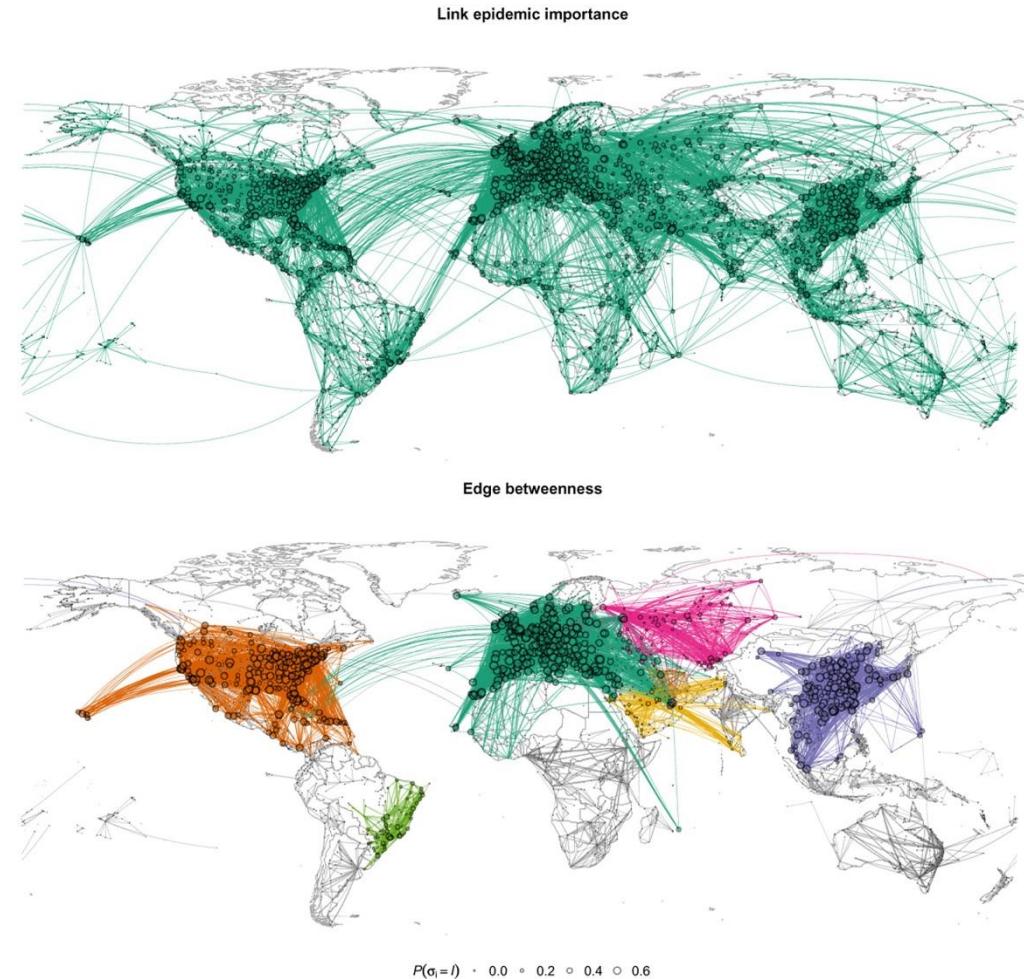
Motivating Applications of Graphs

- Protein-Protein Interactions (PPIs)



Motivating Applications of Graphs

- Epidemic Networks



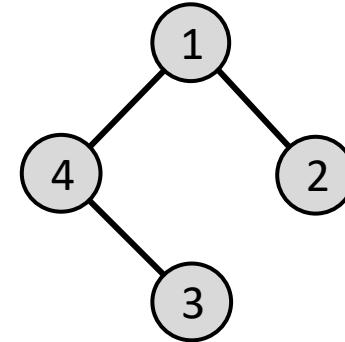
Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - **Graph representations**
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Deep Learning for Graphs

Graph Representations

- Connectivity
 1. Adjacency List: $G = (V, E)$

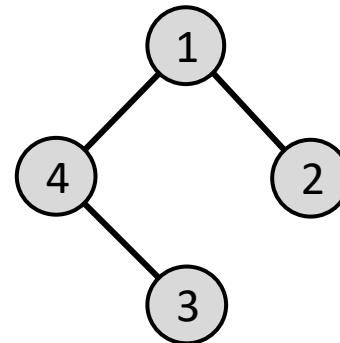


$$V = \{1, 2, 3, 4\}, E = \{(1, 2), (1, 4), (4, 3)\}$$

Deep Learning for Graphs

Graph Representations

- Connectivity
 1. Adjacency List: $G = (V, E)$
 2. Adjacency Matrix: A (sometimes we have weights)



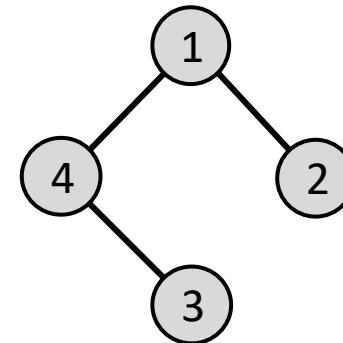
$$V = \{1, 2, 3, 4\}, E = \{(1, 2), (1, 4), (4, 3)\}$$

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Deep Learning for Graphs

Graph Representations

- Connectivity
 1. Adjacency List: $G = (V, E)$
 2. Adjacency Matrix: A (sometimes we have weights)
- Feature
 1. Node Feature: X
 2. Edge Feature
 3. Graph Feature



$$V = \{1, 2, 3, 4\}, E = \{(1,2), (1,4), (4,3)\}$$

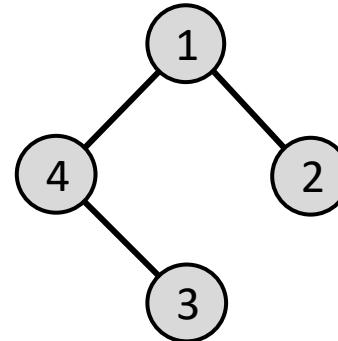
	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Deep Learning for Graphs

Graph Representations

- Connectivity
 1. Adjacency List: $G = (V, E)$
 2. Adjacency Matrix: A (sometimes we have weights)
- Feature
 1. Node Feature: X
 2. Edge Feature
 3. Graph Feature

Graph Data = (A, X)



$$V = \{1, 2, 3, 4\}, E = \{(1,2), (1,4), (4,3)\}$$

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - **Graph isomorphism & automorphism**
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

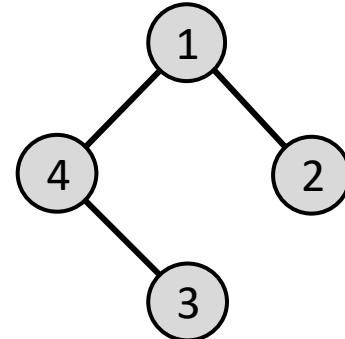
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

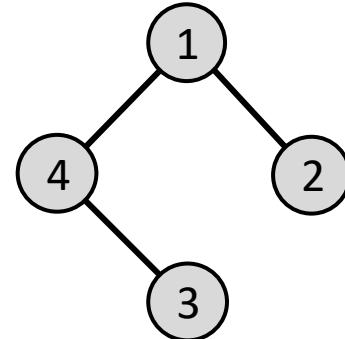
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

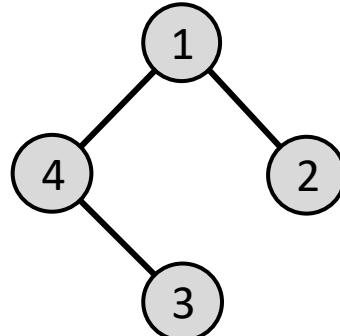
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	1	0
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

Permute Rows

	1	2	3	4
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

Permutation Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Permute Columns

	1	2	3	4
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

Transposed
Permutation Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

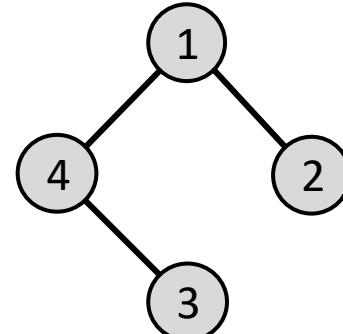
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Permute Rows

	1	2	3	4
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

Permutation Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Permute Columns

	1	2	3	4
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

Transposed
Permutation Matrix

=

	1	2	3	4
1	0	1	0	0
2	1	0	0	1
3	0	0	0	1
4	0	1	1	0

Permuted Adj Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

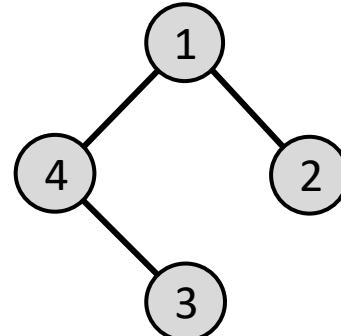
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

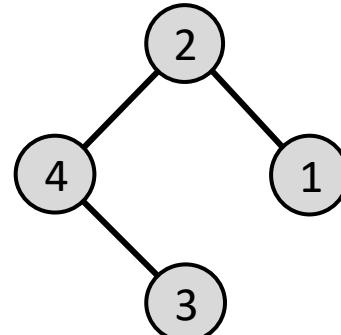
\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$



	1	2	3	4
1	0	1	0	0
2	1	0	0	1
3	0	0	0	1
4	0	1	1	0

$$V' = [2, 1, 3, 4], E' = [(2,1), (2,4), (4,3)]$$

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

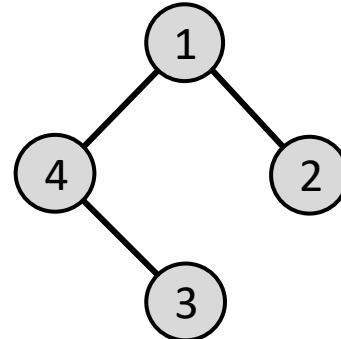
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [2, 1, 3, 4]$$

\Rightarrow

$$E' = [(2,1), (2,4), (4,3)]$$



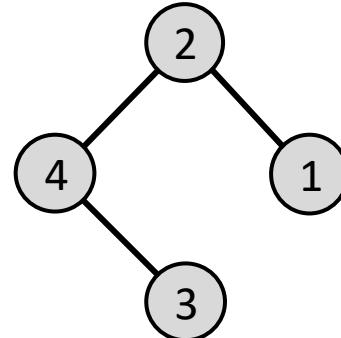
	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Graph Isomorphism:

A bijection f between the vertex sets of $G1$ and $G2$ such that any two vertices u and v of $G1$ are adjacent iff $f(u)$ and $f(v)$ are adjacent in $G2$.

$$PA_1P^\top = A_2$$

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$



	1	2	3	4
1	0	1	0	0
2	1	0	0	1
3	0	0	0	1
4	0	1	1	0

$$V' = [2, 1, 3, 4], E' = [(2,1), (2,4), (4,3)]$$

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

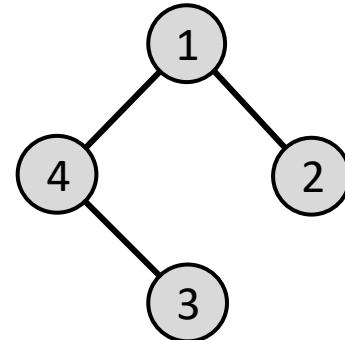
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

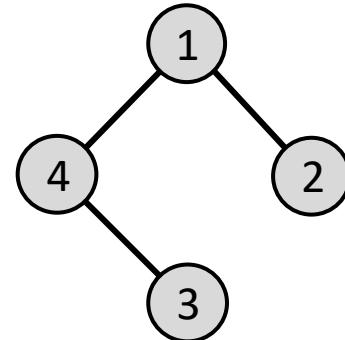
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

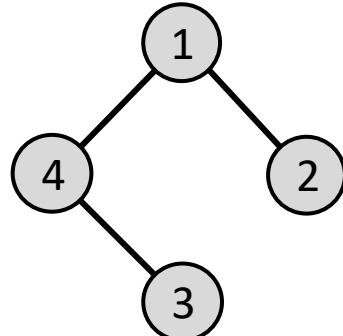
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$

Permute Rows

	1	2	3	4
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0

Permutation Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Permute Columns

	1	2	3	4
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0

Transposed Permutation Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

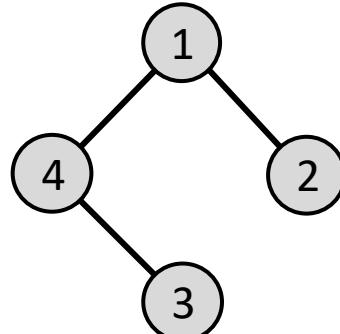
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Permute Rows

	1	2	3	4
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0

Permutation Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Original Adj Matrix

Permute Columns

	1	2	3	4
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0

=

	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Transposed
Permutation Matrix

Permuted Adj Matrix

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

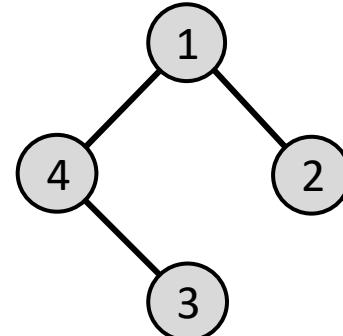
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

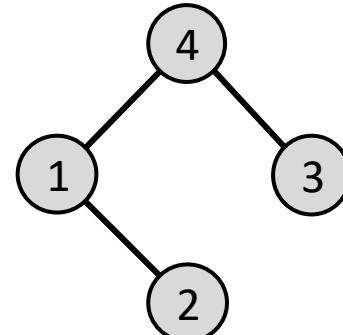
\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V = [1, 2, 3, 4], E = [(1,2), (1,4), (4,3)]$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V' = [4, 3, 2, 1], E' = [(4,3), (4,1), (1,2)]$$

Deep Learning for Graphs

Permutation

$$V = [1, 2, 3, 4]$$

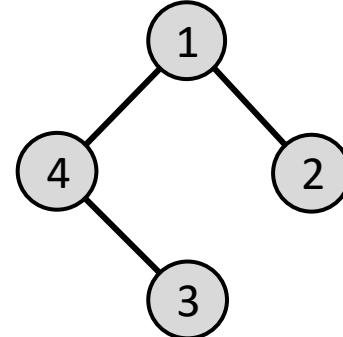
$$E = [(1,2), (1,4), (4,3)]$$

\Rightarrow

$$V' = [4, 3, 2, 1]$$

\Rightarrow

$$E' = [(4,3), (4,1), (1,2)]$$

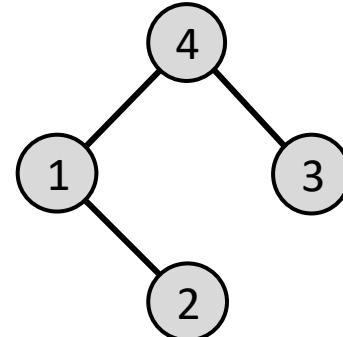


	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

Graph Automorphism:

A permutation σ of the vertex set V , such that the pair of vertices (u, v) form an edge iff the pair $(\sigma(u), \sigma(v))$ also form an edge.

$$PAP^\top = A$$



	1	2	3	4
1	0	1	0	1
2	1	0	0	0
3	0	0	0	1
4	1	0	1	0

$$V' = [4, 3, 2, 1], E' = [(4,3), (4,1), (1,2)]$$

Deep Learning for Graphs

Permutation Invariance & Equivariance

Graph Data (A, X), Model $f(A, X)$

Invariance:

$$f(PAP^\top, PX) = f(A, X)$$

Equivariance:

$$f(PAP^\top, PX) = Pf(A, X)$$

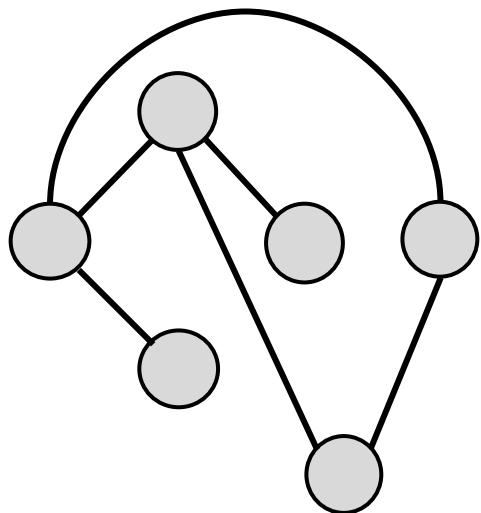
Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - **Challenges of graph data**
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Deep Learning for Graphs

Key Challenges:

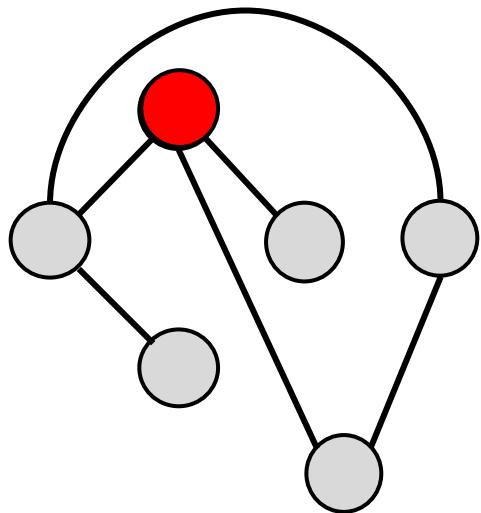
- **Unordered Neighbors**



Deep Learning for Graphs

Key Challenges:

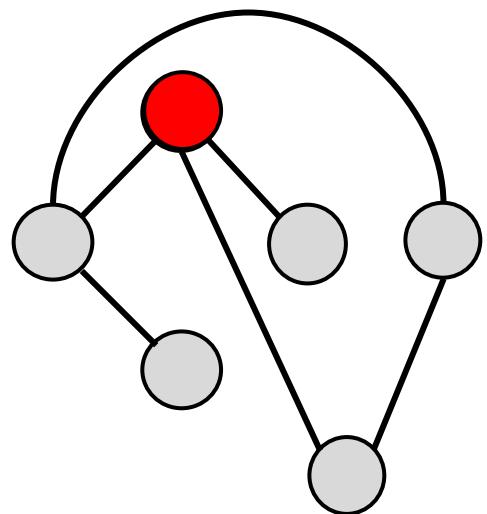
- **Unordered Neighbors**



Deep Learning for Graphs

Key Challenges:

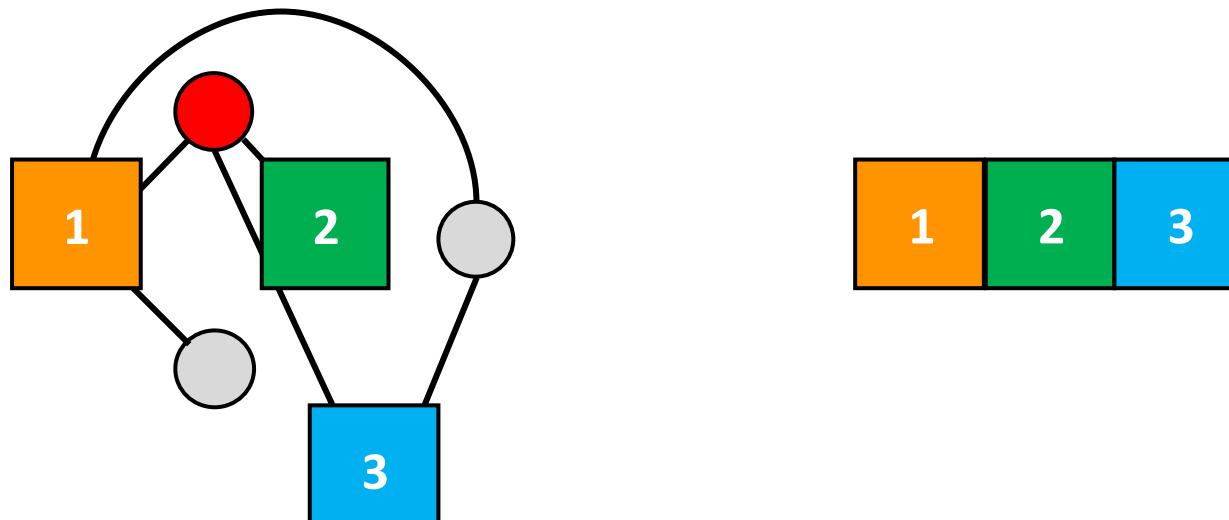
- **Unordered Neighbors**



Deep Learning for Graphs

Key Challenges:

- **Unordered Neighbors**

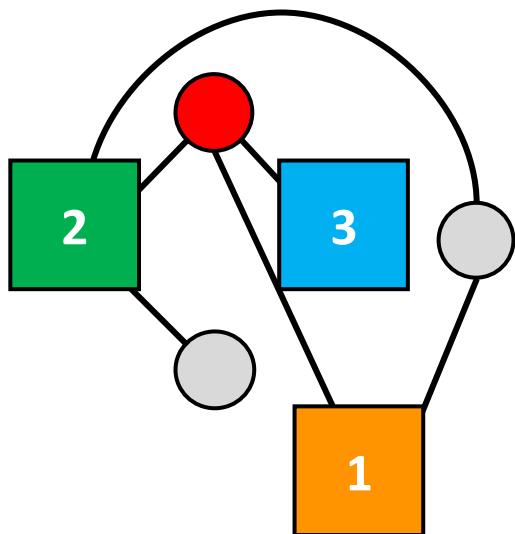
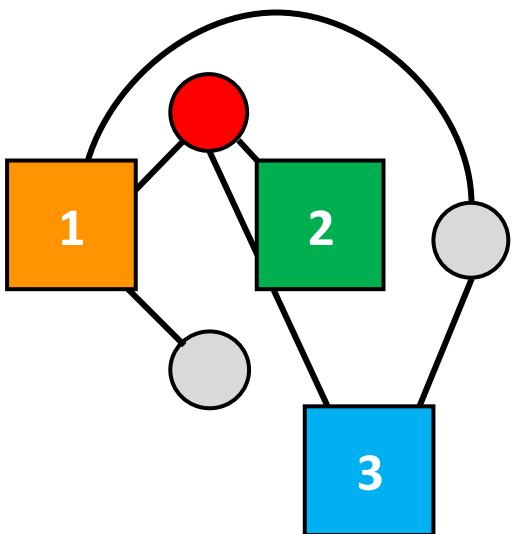


Option 1

Deep Learning for Graphs

Key Challenges:

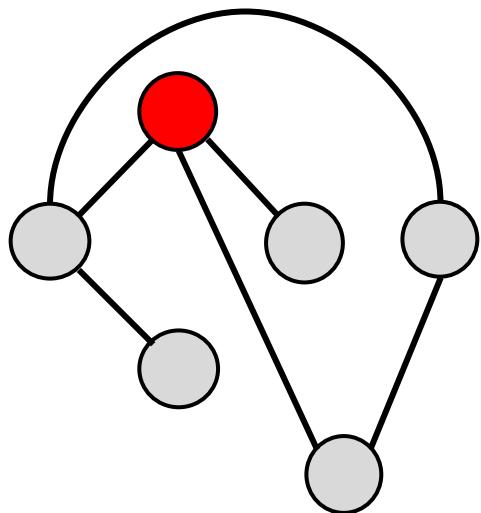
- **Unordered Neighbors**



Deep Learning for Graphs

Key Challenges:

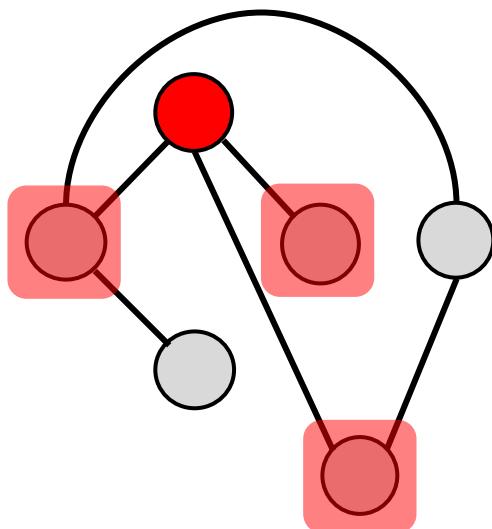
- Unordered Neighbors
- **Varying Neighborhood Sizes**



Deep Learning for Graphs

Key Challenges:

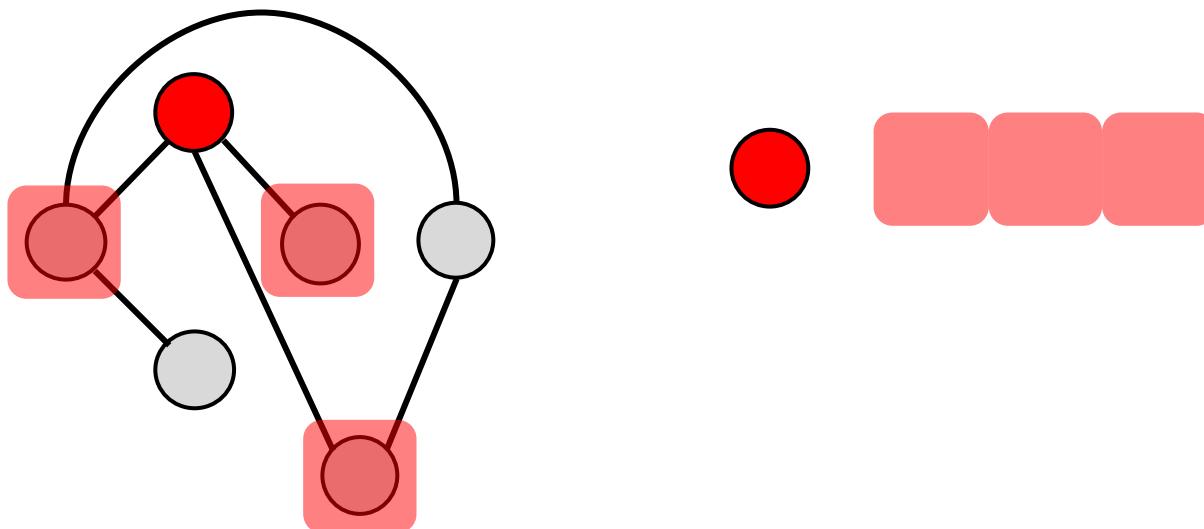
- Unordered Neighbors
- **Varying Neighborhood Sizes**



Deep Learning for Graphs

Key Challenges:

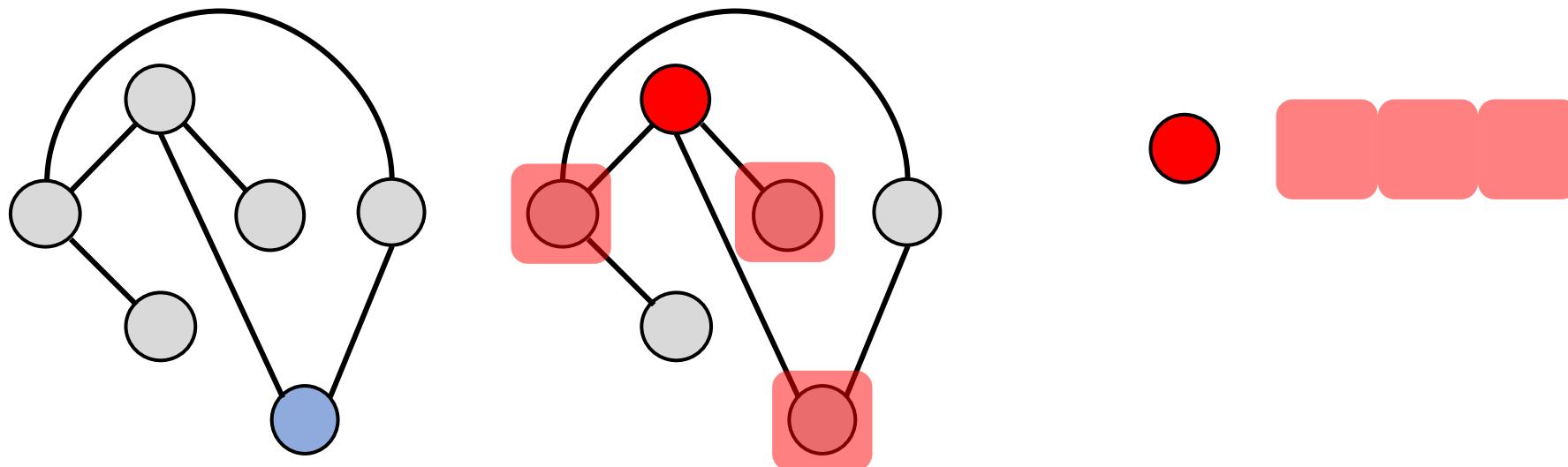
- Unordered Neighbors
- **Varying Neighborhood Sizes**



Deep Learning for Graphs

Key Challenges:

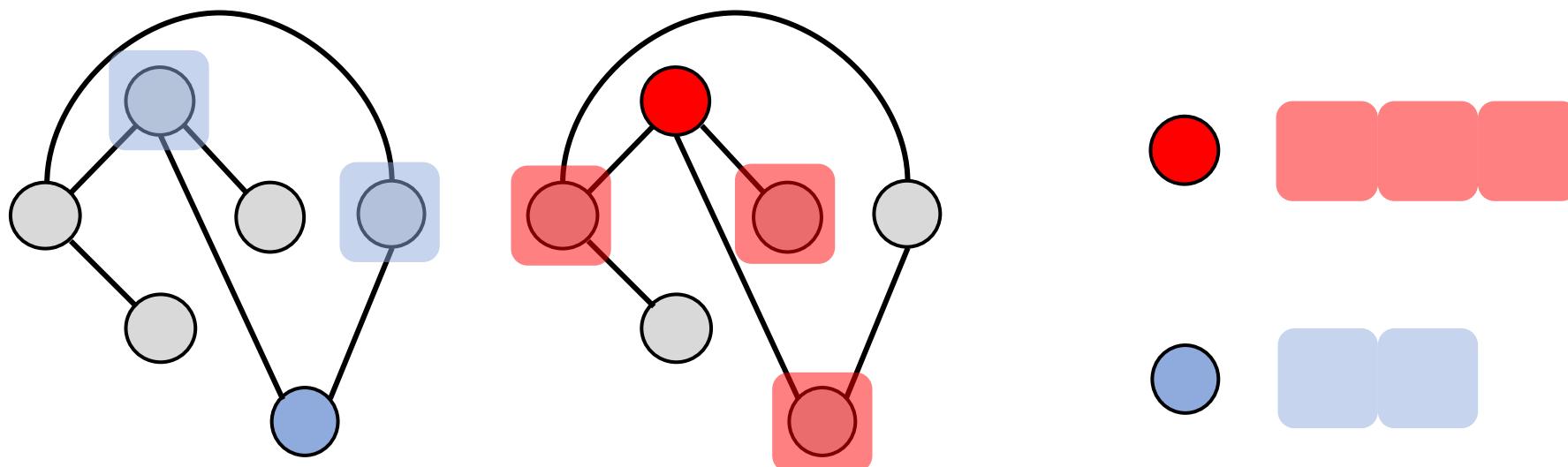
- Unordered Neighbors
- **Varying Neighborhood Sizes**



Deep Learning for Graphs

Key Challenges:

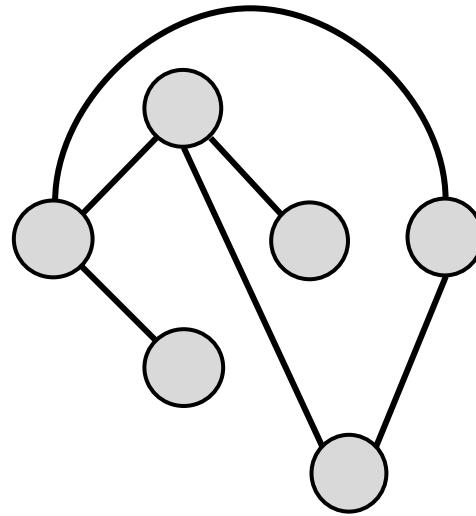
- Unordered Neighbors
- **Varying Neighborhood Sizes**



Deep Learning for Graphs

Key Challenges:

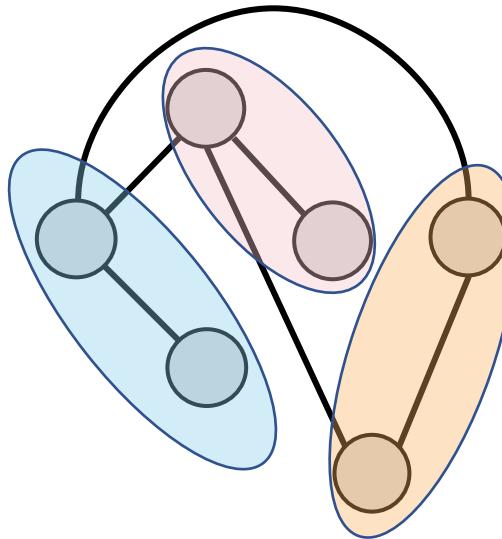
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



Deep Learning for Graphs

Key Challenges:

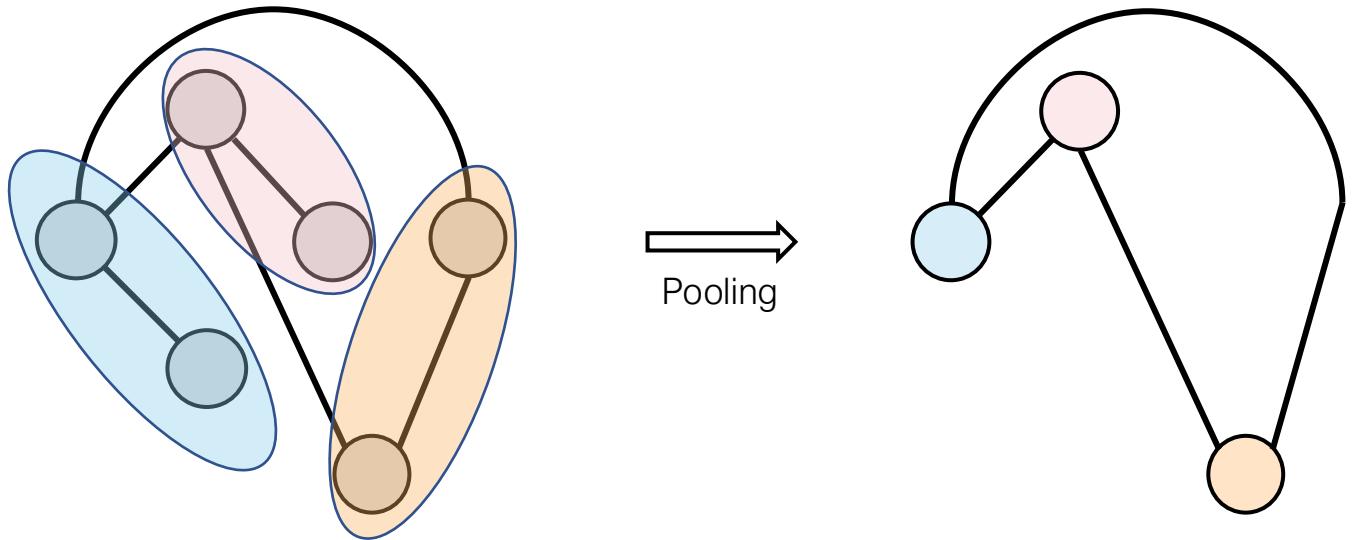
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



Deep Learning for Graphs

Key Challenges:

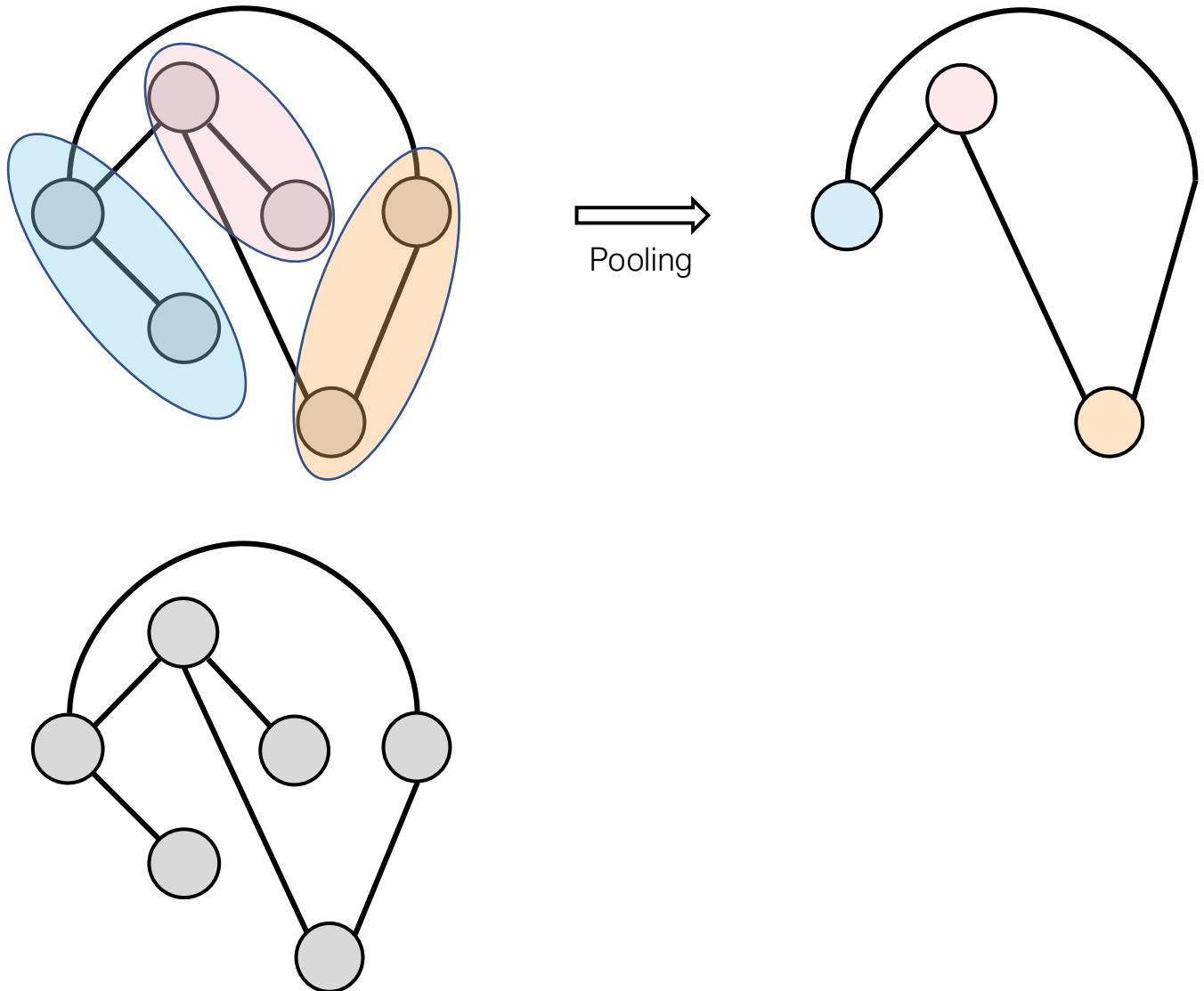
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



Deep Learning for Graphs

Key Challenges:

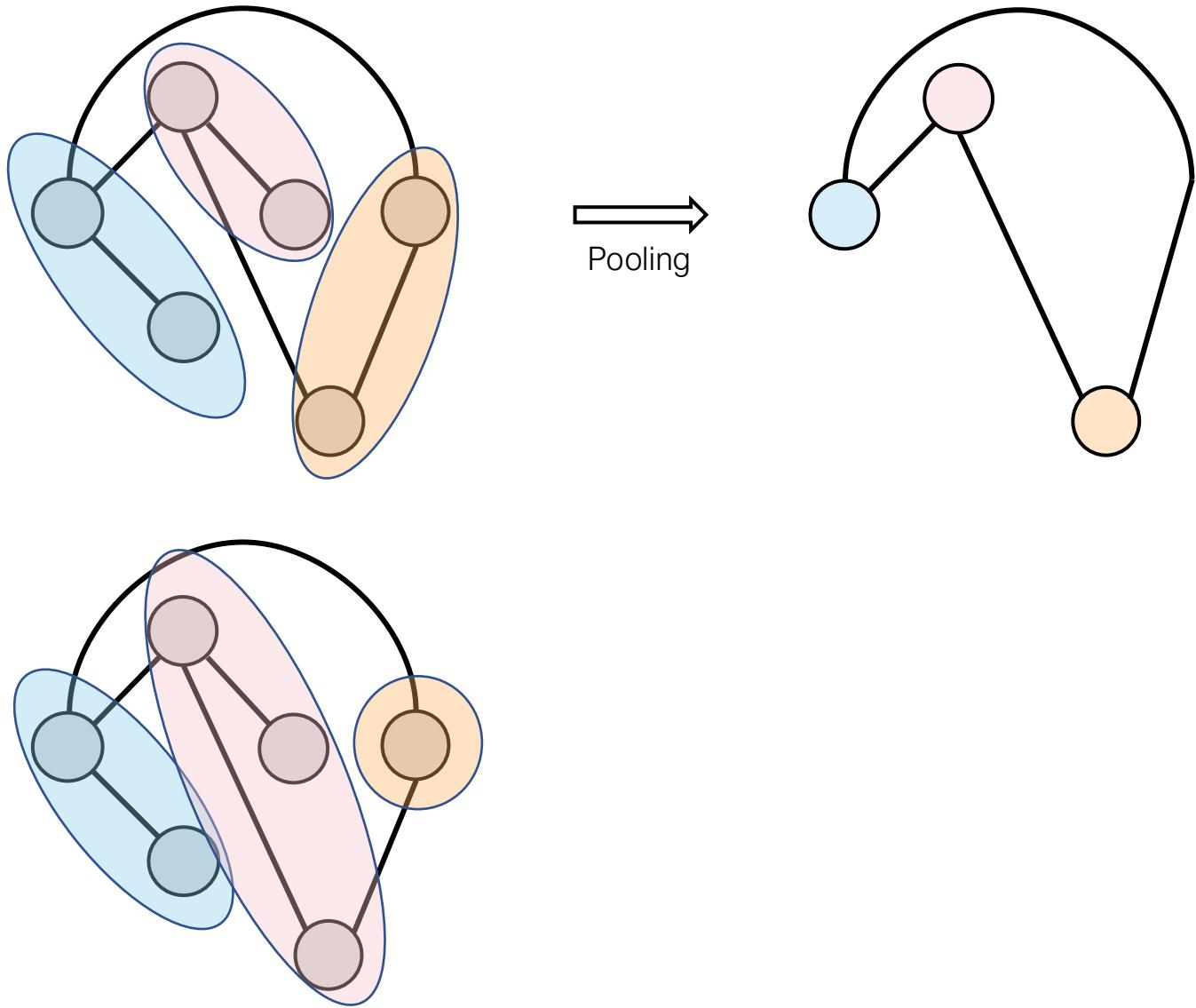
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



Deep Learning for Graphs

Key Challenges:

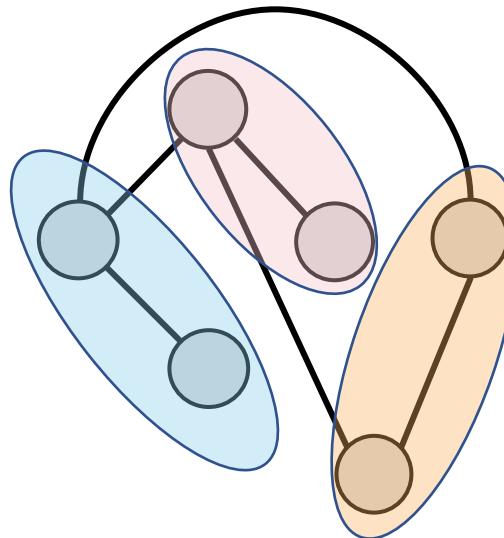
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



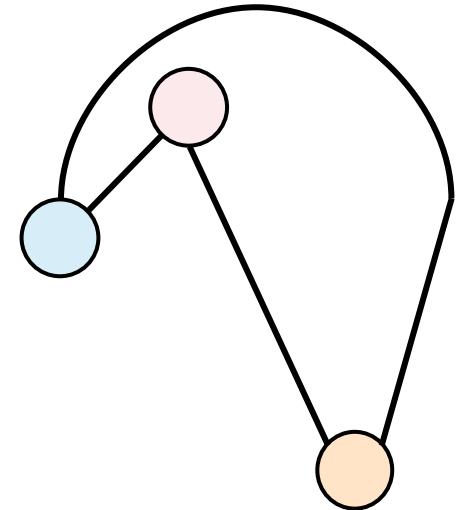
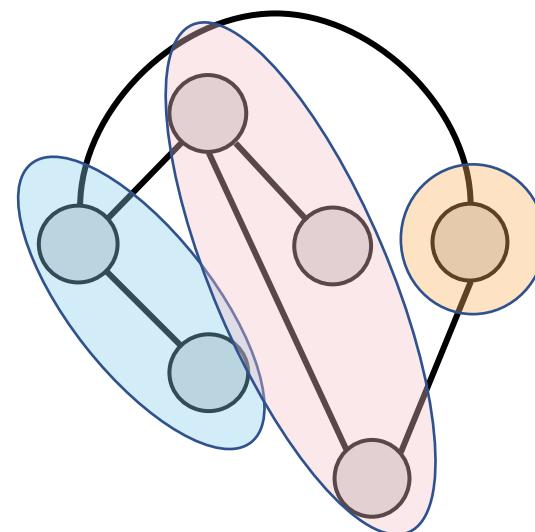
Deep Learning for Graphs

Key Challenges:

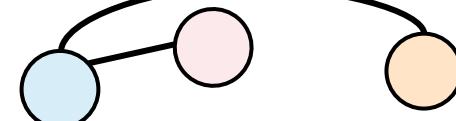
- Unordered Neighbors
- Varying Neighborhood Sizes
- **Varying Graph Partitions**



→
Pooling



→
Pooling



Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - **Graph Neural Networks (GNNs): history & basics**
 - Message passing framework of GNNs
 - Instantiation of message passing
 - Relationship with Transformers

Deep Learning for Graphs

Graph Neural Networks (GNNs)

- Neural networks that can process general graph structured data

Deep Learning for Graphs

Graph Neural Networks (GNNs)

- Neural networks that can process general graph structured data
- First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]
- In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. *IEEE transactions on neural networks*, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In *Proceedings of International Conference on Neural Networks (ICNN'96)* (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. *Cognitive science*, 9(1), pp.147-169.

Deep Learning for Graphs

Graph Neural Networks (GNNs)

- Neural networks that can process general graph structured data
- First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]
- In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
- Most of GNNs (if not all) can be incorporated by the **Message Passing** paradigm

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. *IEEE transactions on neural networks*, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In *Proceedings of International Conference on Neural Networks (ICNN'96)* (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. *Cognitive science*, 9(1), pp.147-169.

Deep Learning for Graphs

Graph Neural Networks (GNNs)

- Neural networks that can process general graph structured data
- First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]
- In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
- Most of GNNs (if not all) can be incorporated by the **Message Passing** paradigm
- GNNs have been independently studied in signal processing community under **Graph Signal Processing**

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. *IEEE transactions on neural networks*, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In *Proceedings of International Conference on Neural Networks (ICNN'96)* (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. *Cognitive science*, 9(1), pp.147-169.

Deep Learning for Graphs

Graph Neural Networks (GNNs)

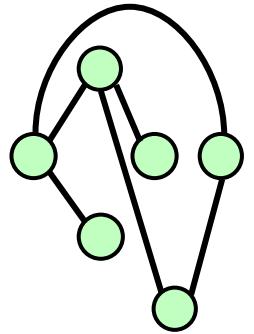
- Neural networks that can process general graph structured data
- First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]
- In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
- Most of GNNs (if not all) can be incorporated by the **Message Passing** paradigm
- GNNs have been independently studied in signal processing community under **Graph Signal Processing**
- The study of GNNs for geometric processing are also called **Geometric Deep Learning**

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. *IEEE transactions on neural networks*, 20(1), pp.61-80.

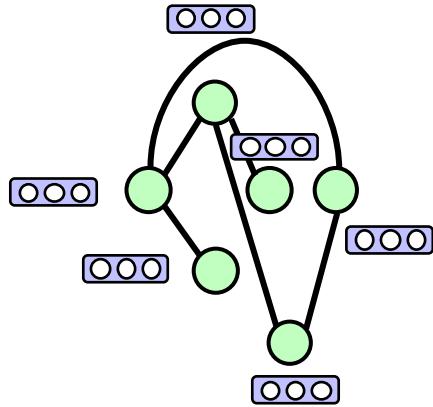
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In *Proceedings of International Conference on Neural Networks (ICNN'96)* (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. *Cognitive science*, 9(1), pp.147-169.

Graph Neural Networks (GNNs)

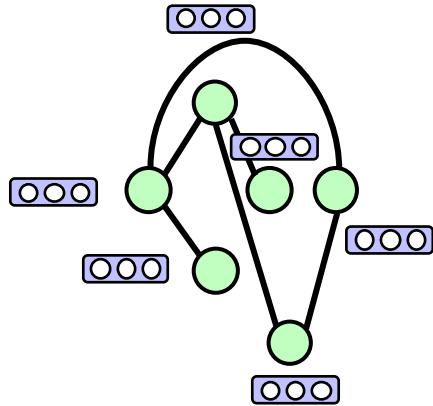


Graph Neural Networks (GNNs)



Input Encoding

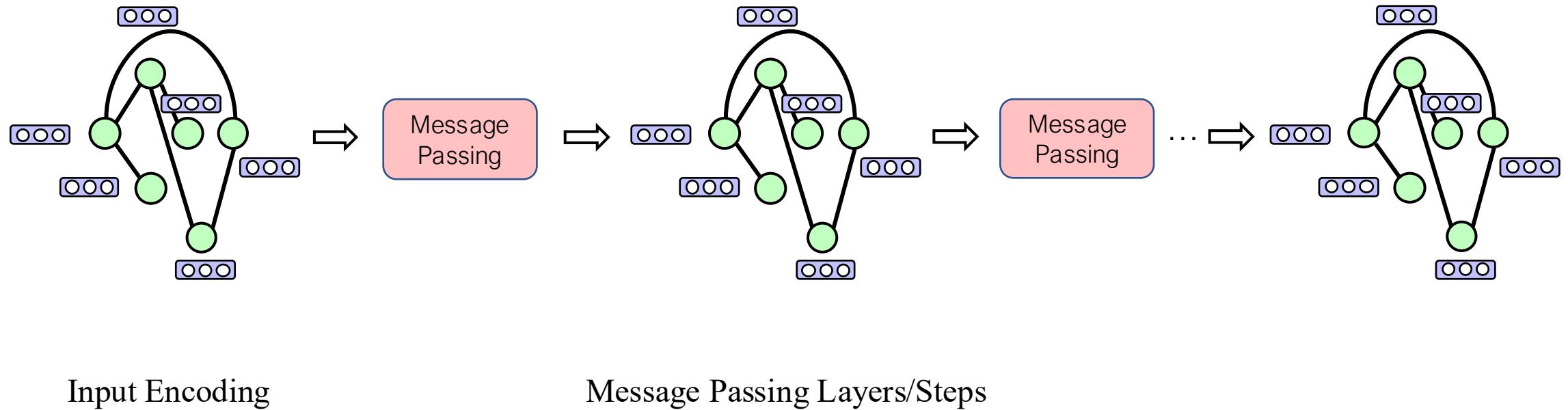
Graph Neural Networks (GNNs)



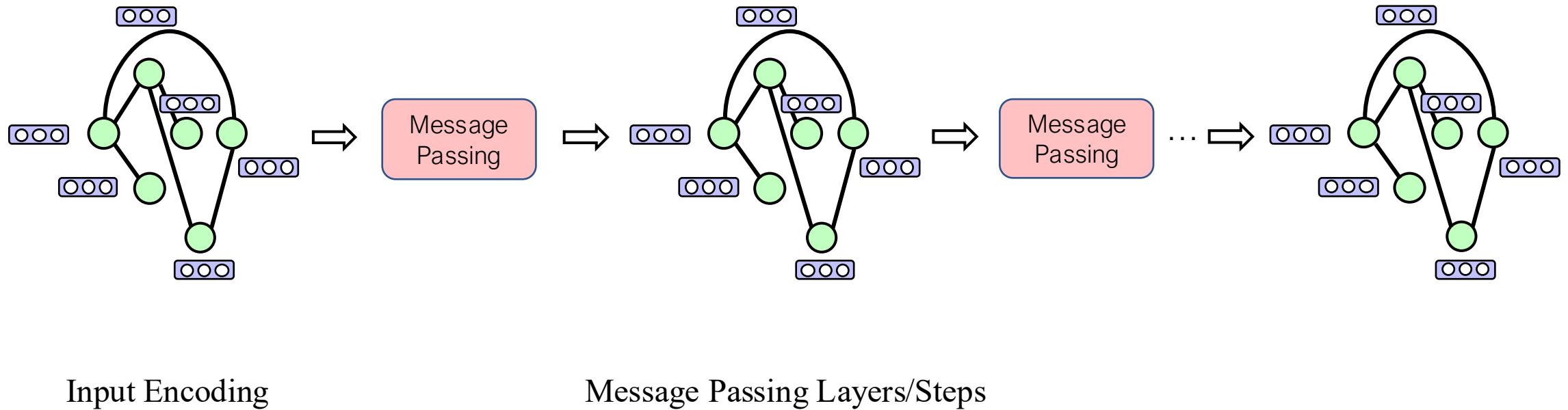
Input Encoding

1. Node Feature
 - *If it is unavailable, use 1-of- K , random, index/size encoding of node index*
2. Edge Feature
 - *Feed it to message network*
3. Graph Feature
 - *Treat it as a super node in your graph*
 - *Feed graph feature to readout layer*

Graph Neural Networks (GNNs)

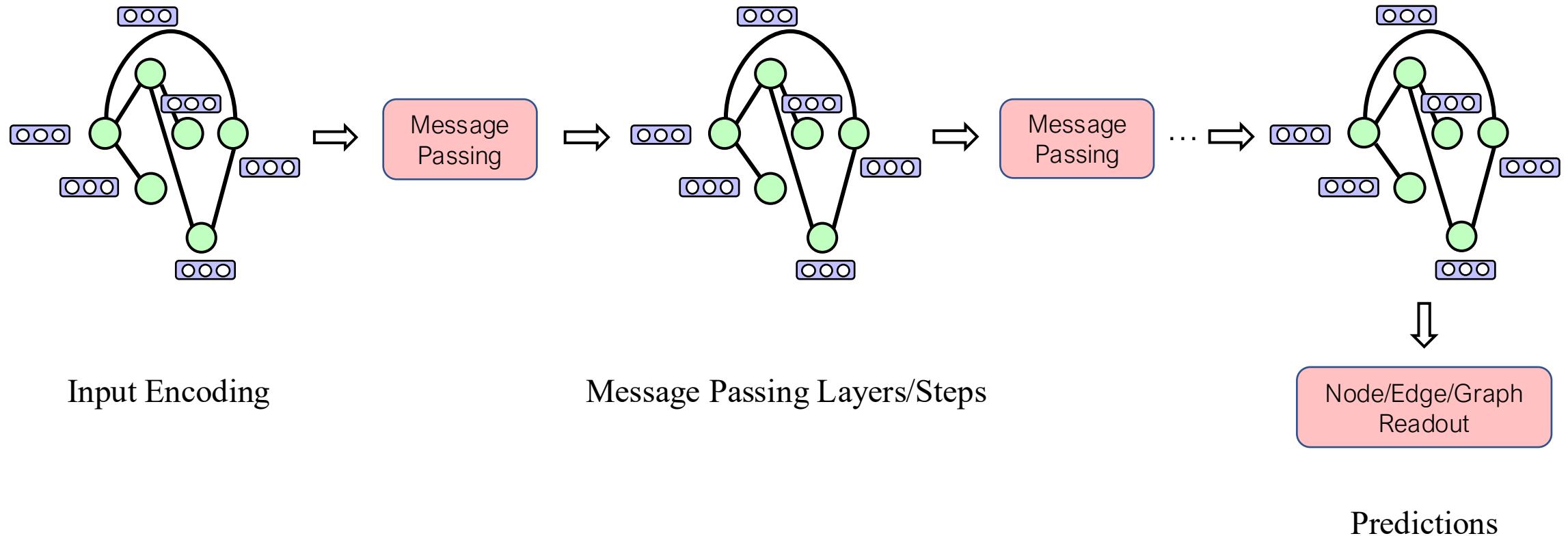


Graph Neural Networks (GNNs)



Steps: share message passing module (Recurrent Networks)
Layers: do not share message passing module (Feedforward Networks)

Graph Neural Networks (GNNs)

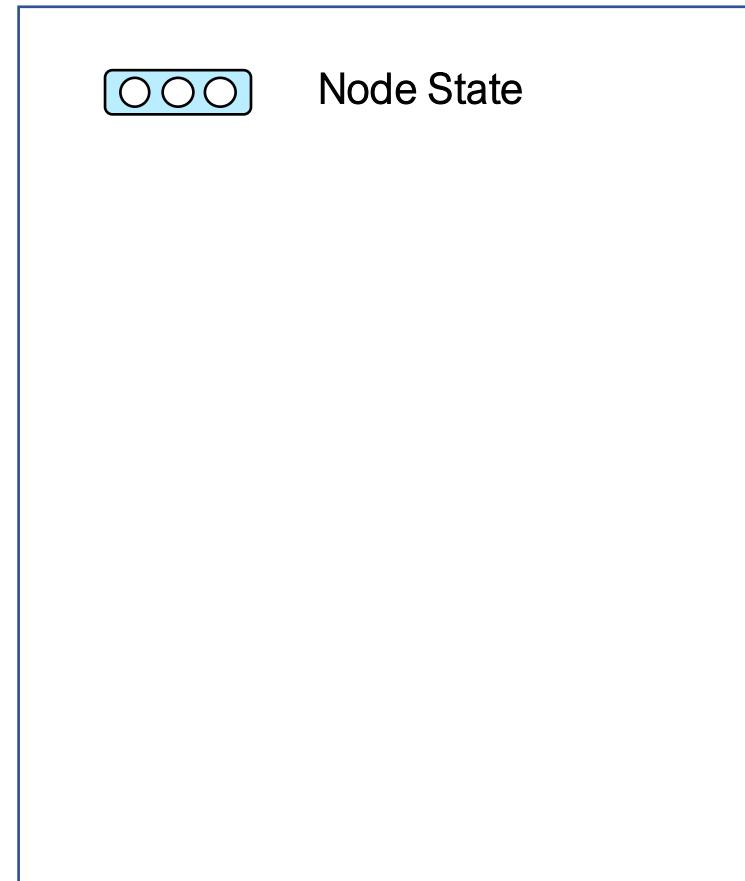


Outline

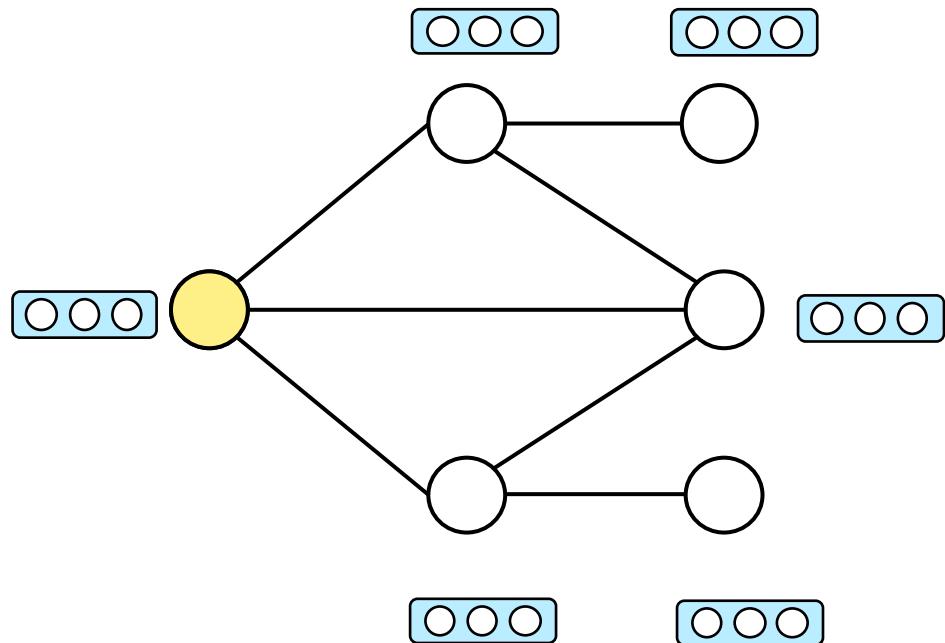
- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - **Message passing framework of GNNs**
 - Instantiation of message passing
 - Relationship with Transformers

Message Passing in GNNs

h_i^t

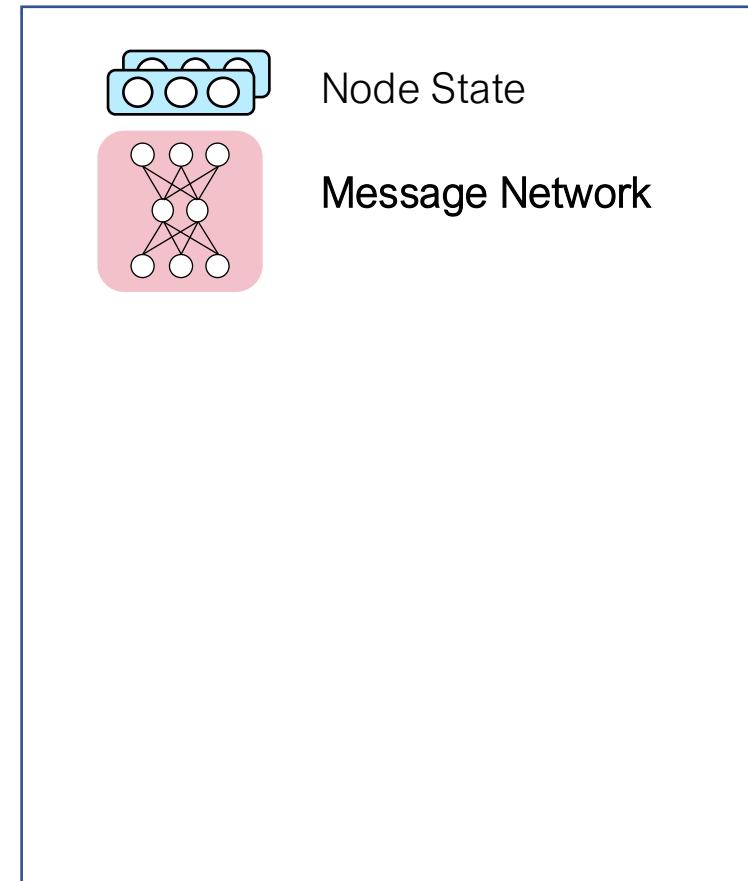


$(t+1)$ -th message passing step/layer

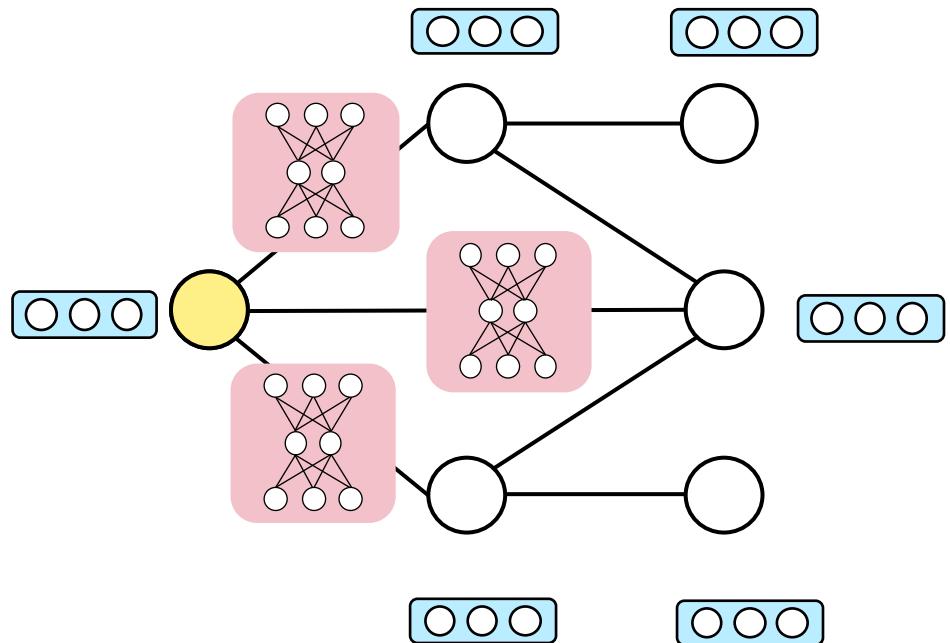


Message Passing in GNNs

\mathbf{h}_i^t \mathbf{h}_j^t

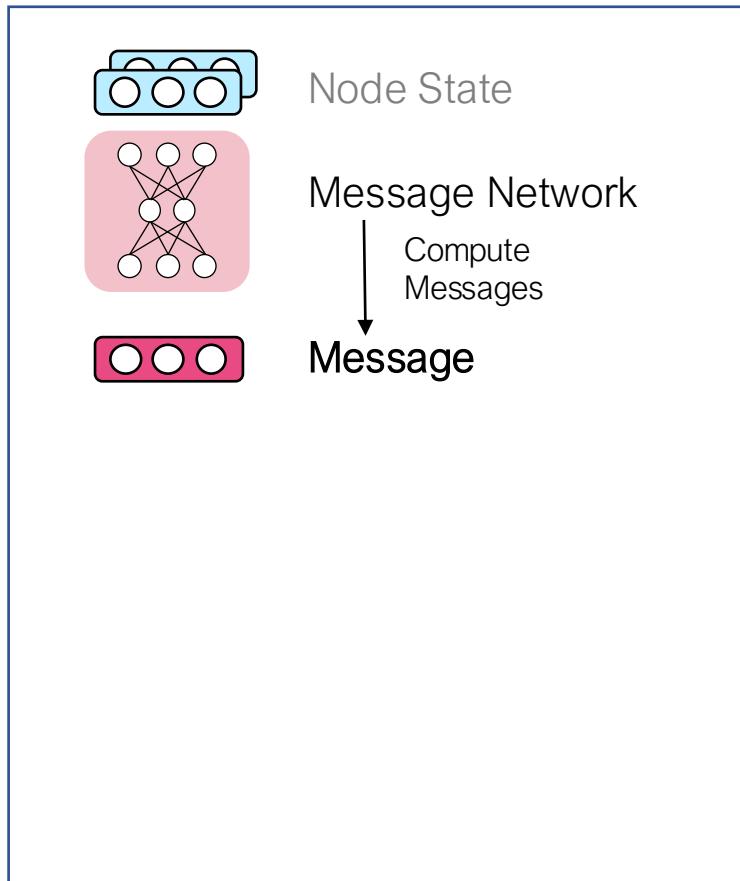


($t+1$)-th message passing step/layer

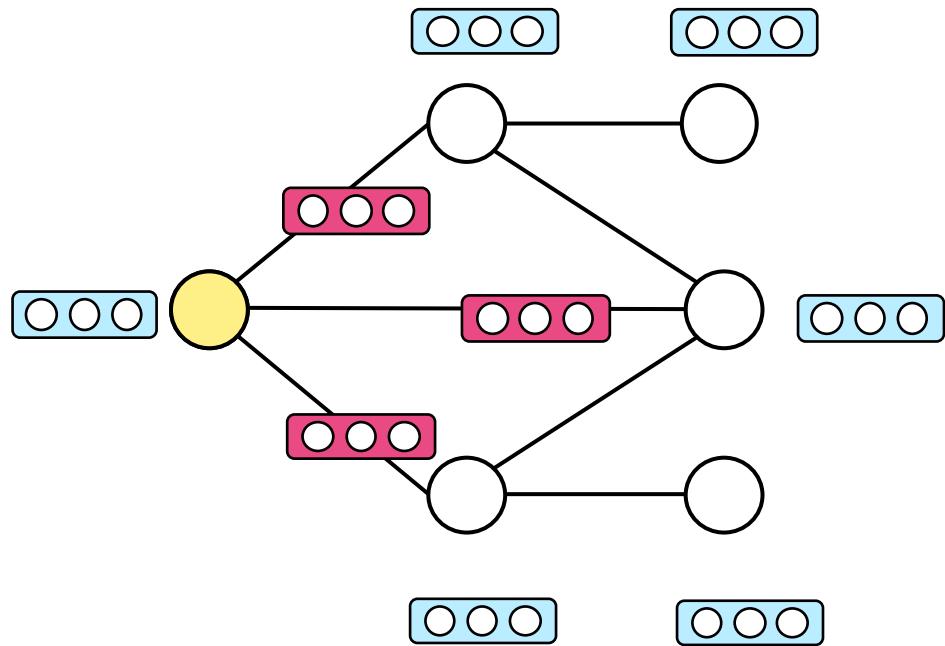


Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

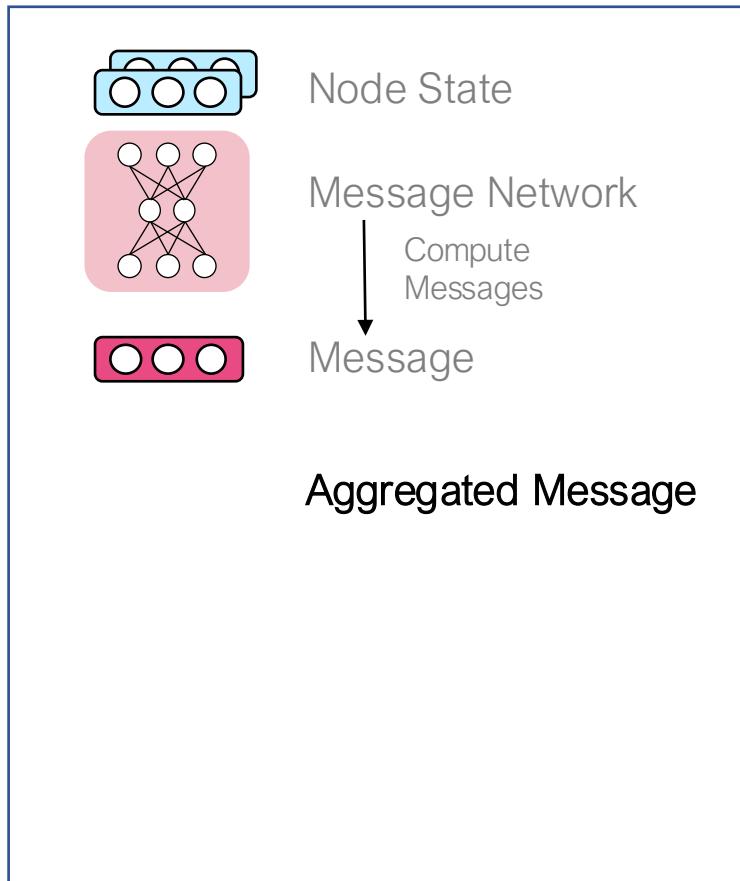


$(t+1)$ -th message passing step/layer

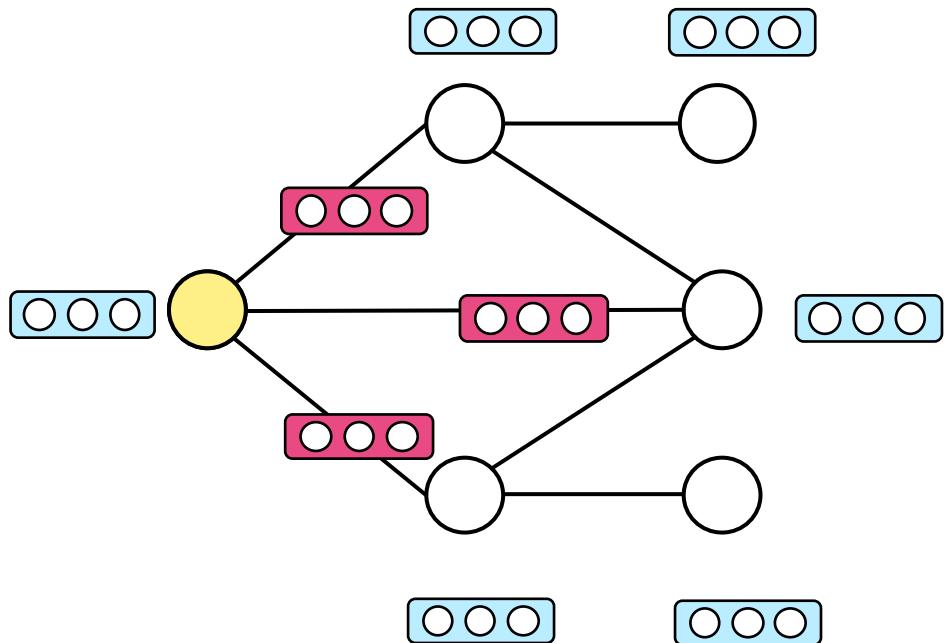


Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

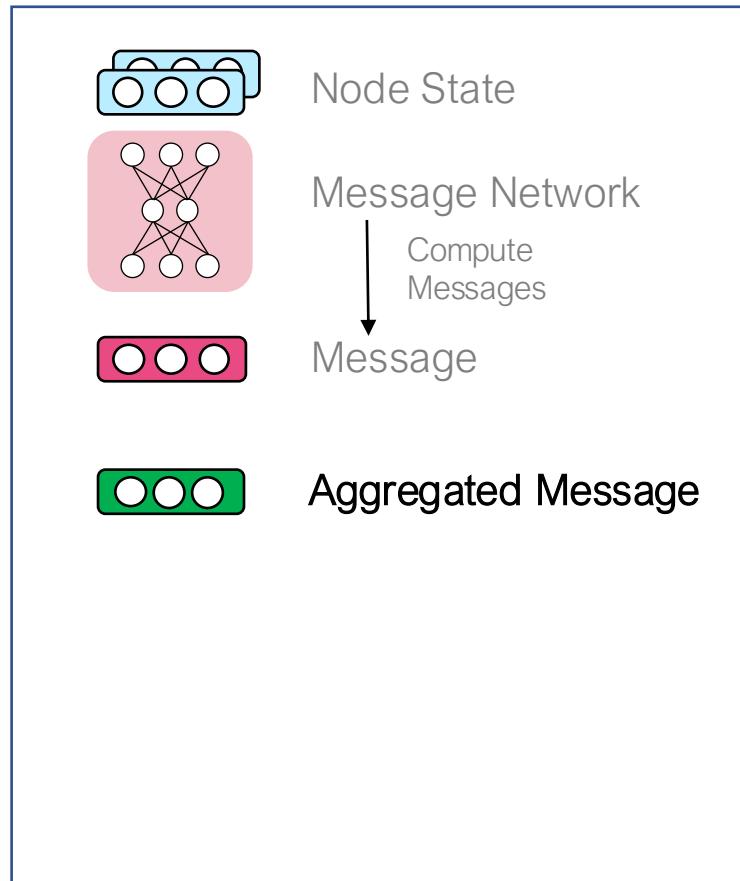


($t+1$)-th message passing step/layer

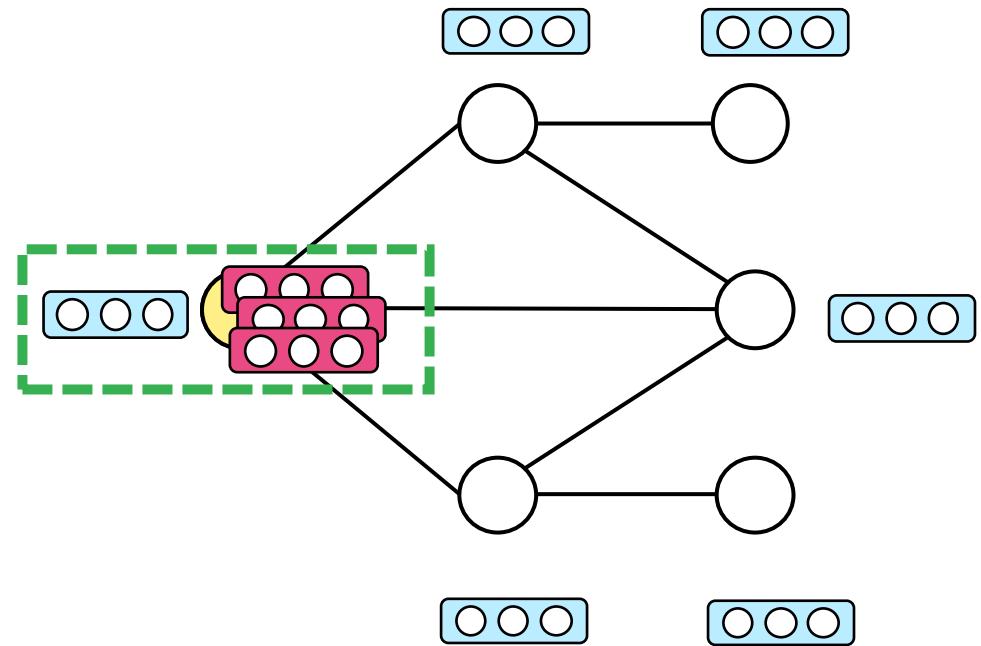


Message Passing in GNNs

$$\begin{aligned}\mathbf{h}_i^t & \quad \mathbf{h}_j^t \\ \mathbf{m}_{ji}^t & = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) \\ \bar{\mathbf{m}}_i^t & = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})\end{aligned}$$



($t+1$)-th message passing step/layer

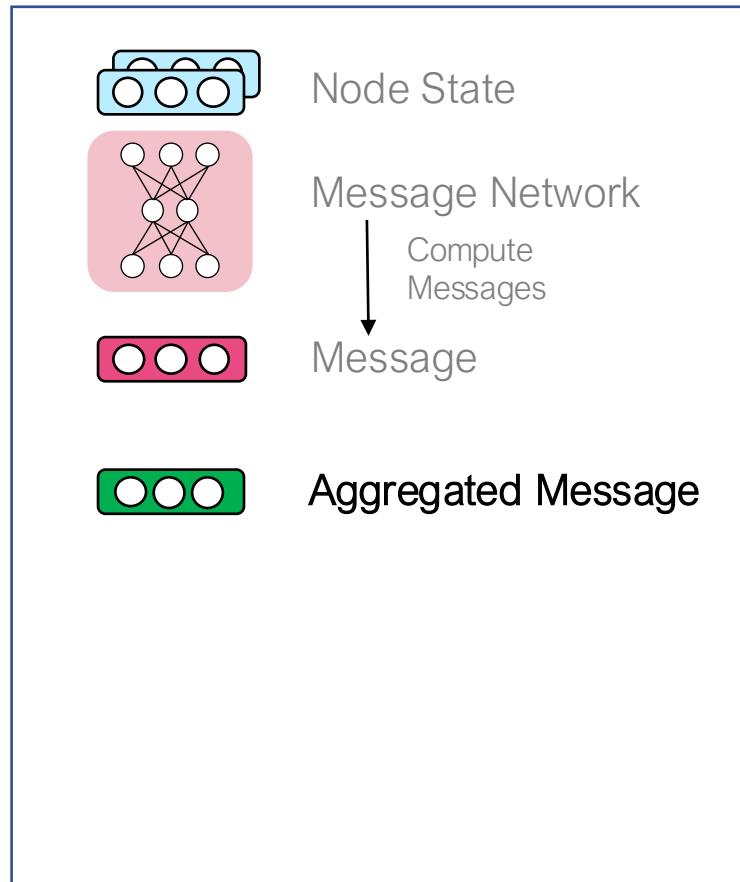


Message Passing in GNNs

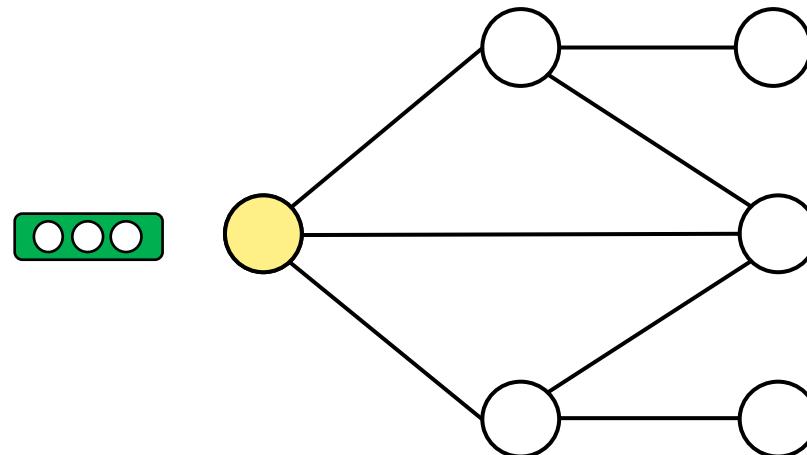
$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$



$(t+1)$ -th message passing step/layer

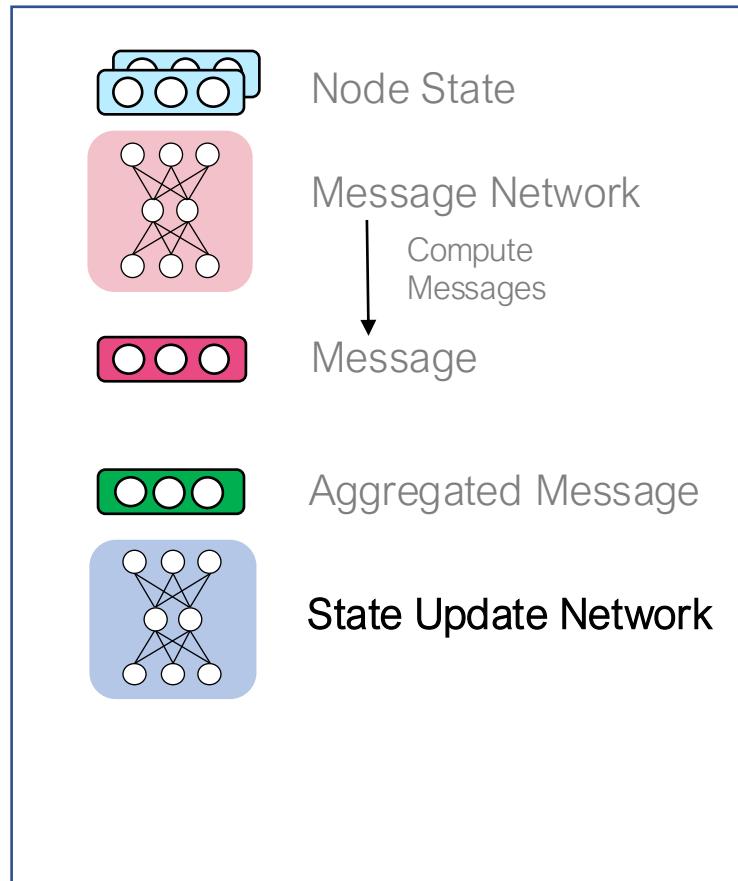


Message Passing in GNNs

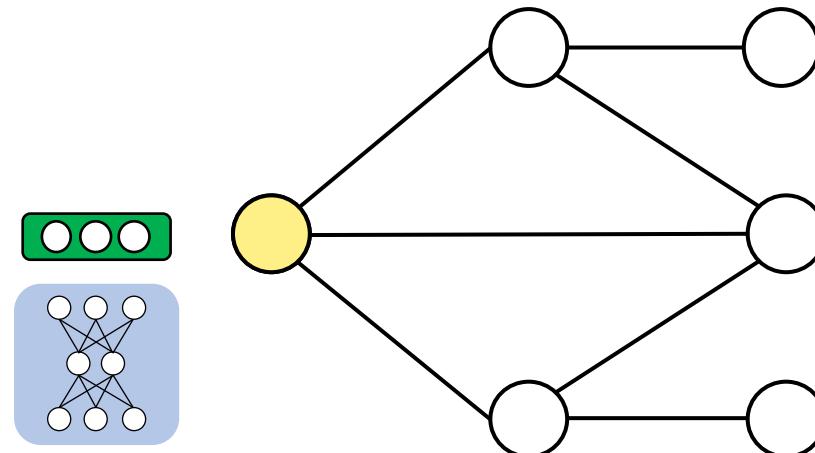
$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$



($t+1$)-th message passing step/layer



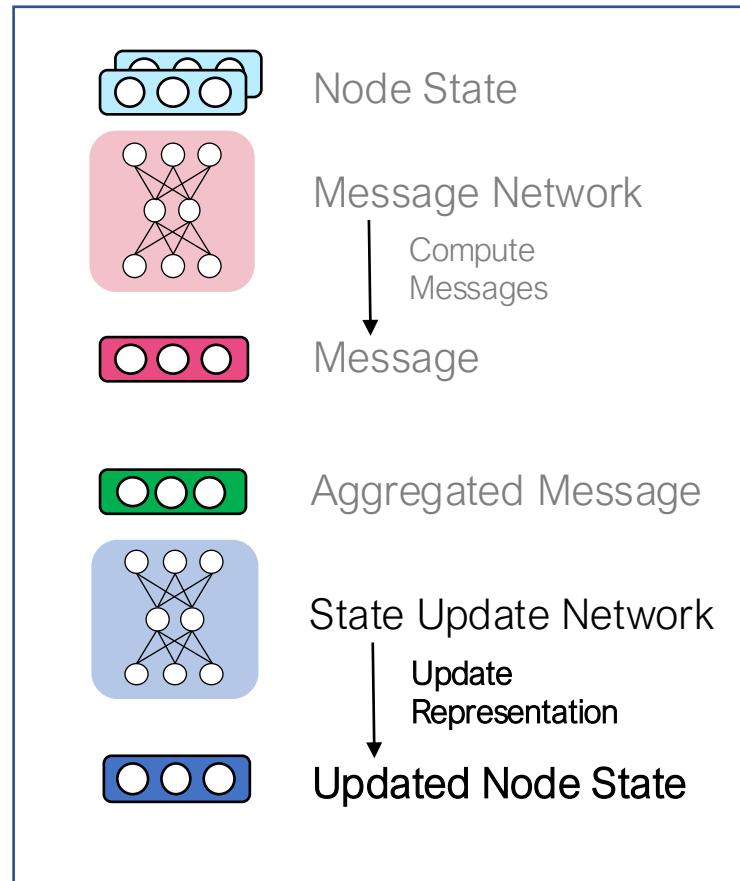
Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

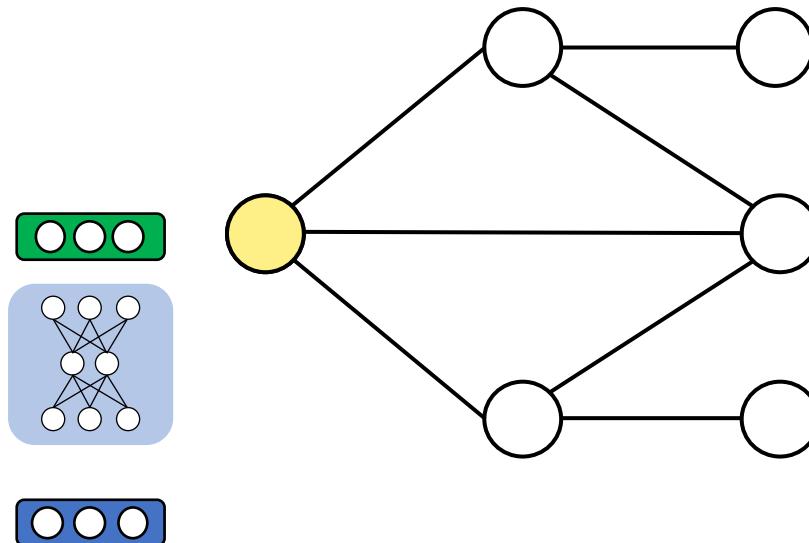
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$



($t+1$)-th message passing step/layer



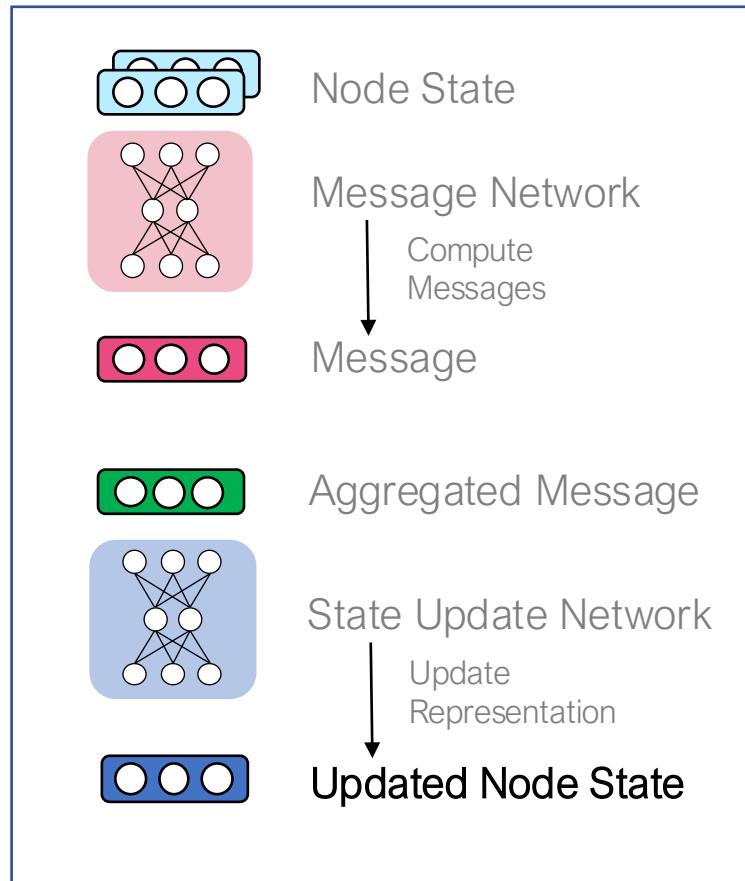
Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

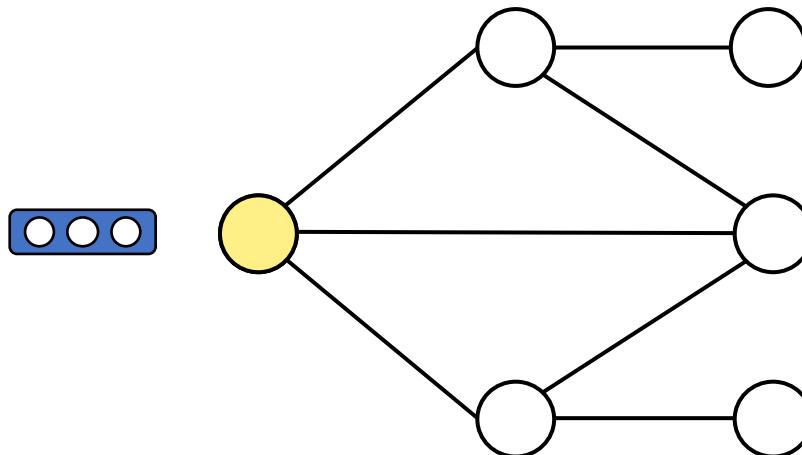
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$



(t+1)-th message passing step/layer



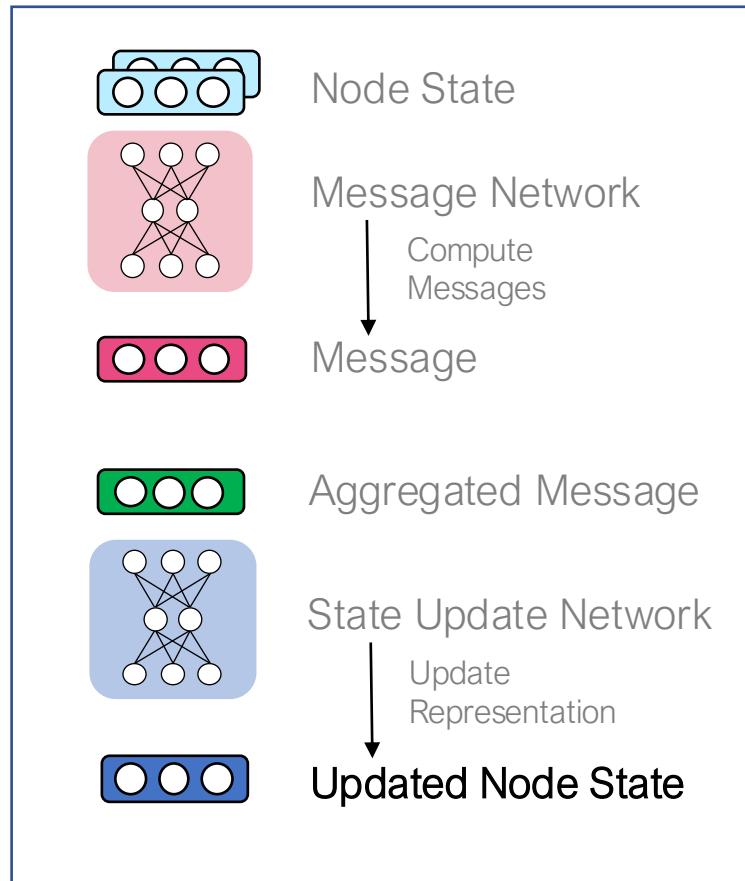
Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

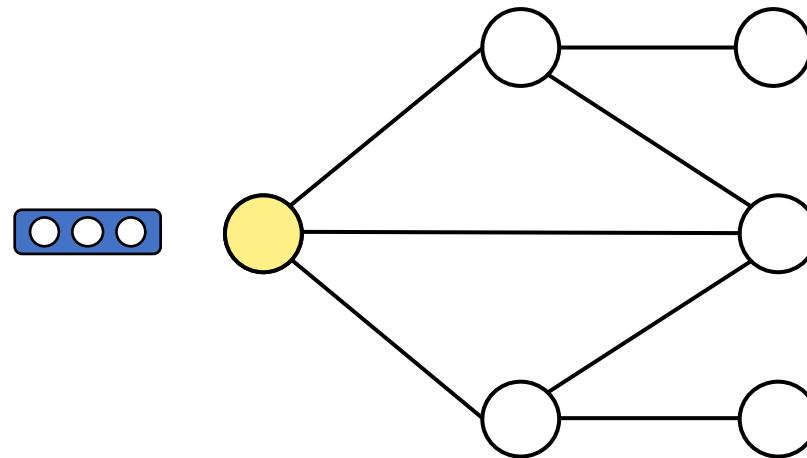
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$



$(t+1)$ -th message passing step/layer



- **Parallel Schedule!**

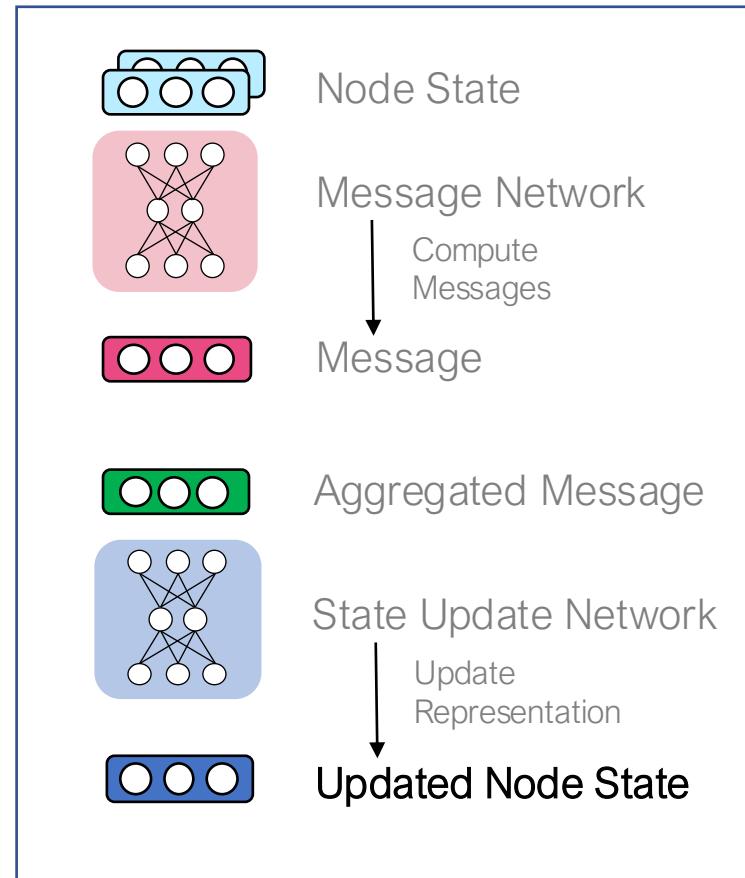
Message Passing in GNNs

$$\mathbf{h}_i^t \quad \mathbf{h}_j^t$$

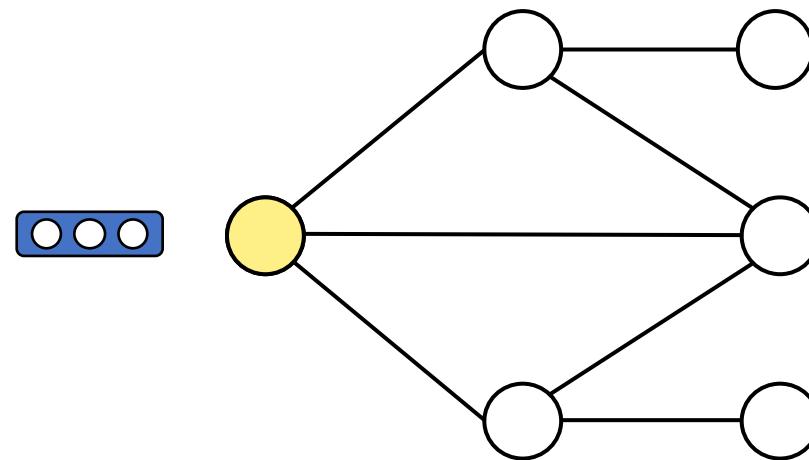
$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$



$(t+1)$ -th message passing step/layer



- Parallel Schedule!
- Other schedules [1] are possible and could improve performance in certain tasks!

Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - **Instantiation of message passing**
 - Relationship with Transformers

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

3. Update Node Representations

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \max_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \max_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \text{LSTM}([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]) \quad [3]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \max_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \text{LSTM}([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]) \quad [3]$$

3. Update Node Representations

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{GRU}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) \quad [1,4]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \max_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \text{LSTM}([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]) \quad [3]$$

3. Update Node Representations

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{GRU}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) \quad [1,4]$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{MLP}_1(\mathbf{h}_i^t) + \text{MLP}_2(\bar{\mathbf{m}}_i^t) \quad [2]$$

Message Passing in GNNs

Instantiations:

1. Compute Messages

$$\mathbf{m}_{ji}^t = f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t)$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t]) \quad [1]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t) = \mathbf{h}_j^t \quad [2]$$

$$f_{\text{msg}}(\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}) = \text{MLP}([\mathbf{h}_j^t, \mathbf{h}_i^t, \mathbf{e}_{ji}]) \quad [1]$$

Edge Feature

2. Aggregate Messages

$$\bar{\mathbf{m}}_i^t = f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\})$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [1,2,4]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \max_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^t \quad [3]$$

$$f_{\text{agg}}(\{\mathbf{m}_{ji}^t | j \in \mathcal{N}_i\}) = \text{LSTM}([\mathbf{m}_{ji}^t | j \in \mathcal{N}_i]) \quad [3]$$

3. Update Node Representations

$$\mathbf{h}_i^{t+1} = f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t)$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{GRU}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) \quad [1,4]$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{MLP}_1(\mathbf{h}_i^t) + \text{MLP}_2(\bar{\mathbf{m}}_i^t) \quad [2]$$

$$f_{\text{update}}(\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t) = \text{MLP}([\mathbf{h}_i^t, \bar{\mathbf{m}}_i^t]) \quad [3]$$

Readout in GNNs

Instantiations:

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$

2. Edge Readout

$$\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$$

3. Graph Readout

$$\mathbf{y} = f_{\text{readout}}(\{\mathbf{h}_i^T\})$$

Readout in GNNs

Instantiations:

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T) \quad f_{\text{readout}}(\mathbf{h}_i^T) = \text{MLP}(\mathbf{h}_i^T)$$

Readout in GNNs

Instantiations:

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$

$$f_{\text{readout}}(\mathbf{h}_i^T) = \text{MLP}(\mathbf{h}_i^T)$$

2. Edge Readout

$$\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T])$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}])$$

Edge Feature

Readout in GNNs

Instantiations:

1. Node Readout

$$\mathbf{y}_i = f_{\text{readout}}(\mathbf{h}_i^T)$$

$$f_{\text{readout}}(\mathbf{h}_i^T) = \text{MLP}(\mathbf{h}_i^T)$$

2. Edge Readout

$$\mathbf{y}_{ij} = f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T)$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T])$$

$$f_{\text{readout}}(\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}) = \text{MLP}([\mathbf{h}_i^T, \mathbf{h}_j^T, e_{ij}])$$

Edge Feature

3. Graph Readout

$$\mathbf{y} = f_{\text{readout}}(\{\mathbf{h}_i^T\})$$

$$f_{\text{readout}}(\{\mathbf{h}_i^T\}) = \sum_i \sigma(\text{MLP}_1(\mathbf{h}_i^T)) \text{MLP}_2(\mathbf{h}_i^T)$$

$$f_{\text{readout}}(\{\mathbf{h}_i^T\}, \mathbf{g}) = \sum_i \sigma(\text{MLP}_1(\mathbf{h}_i^T, \mathbf{g})) \text{MLP}_2(\mathbf{h}_i^T, \mathbf{g})$$

Graph Feature

Implementations

1. *Although graph could be very sparse, we should maximally exploit dense operators since they are efficient on GPUs!*
2. *Parallel message passing is very GPU friendly!*

Implementations

1. *Although graph could be very sparse, we should maximally exploit dense operators since they are efficient on GPUs!*
2. *Parallel message passing is very GPU friendly!*

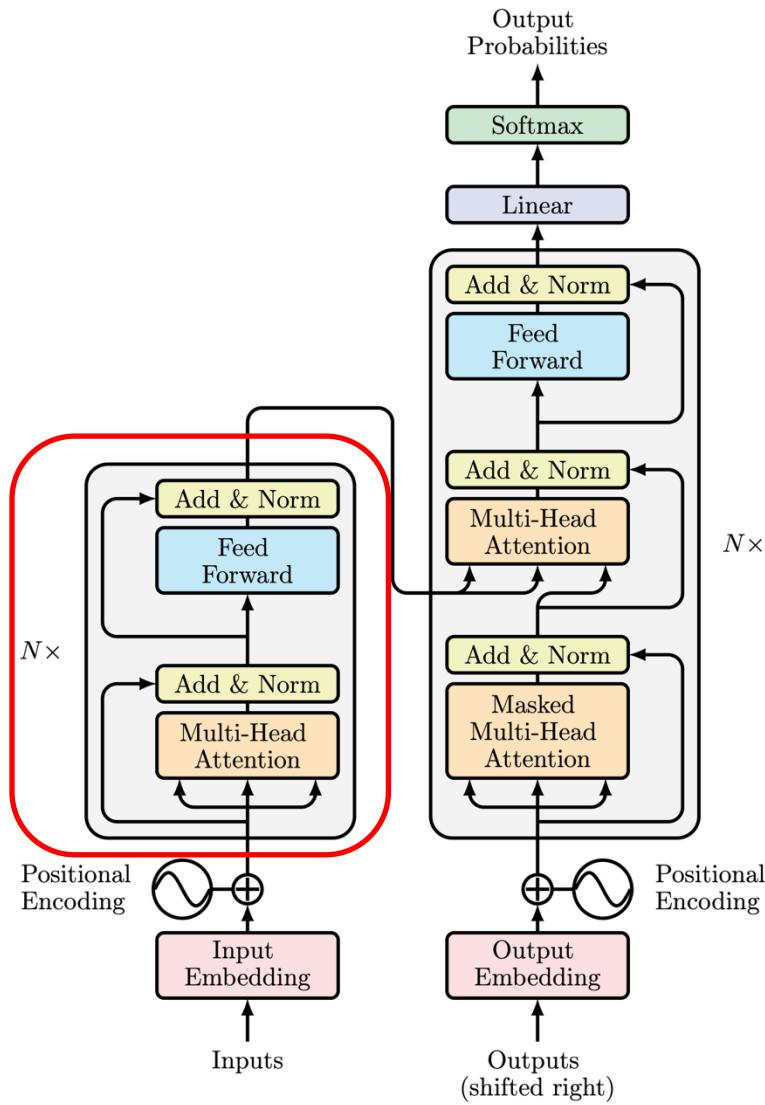
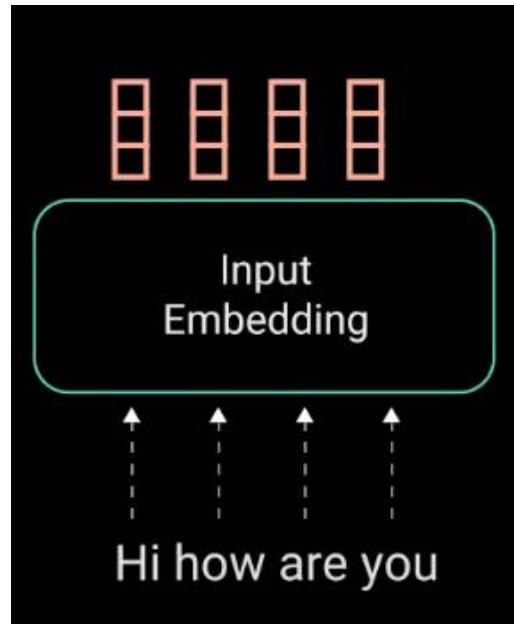
Tips:

- Use adjacency list representation
- Compute messages for all edges in parallel
- Compute aggregations for all nodes in parallel
- Compute updates for all nodes in parallel

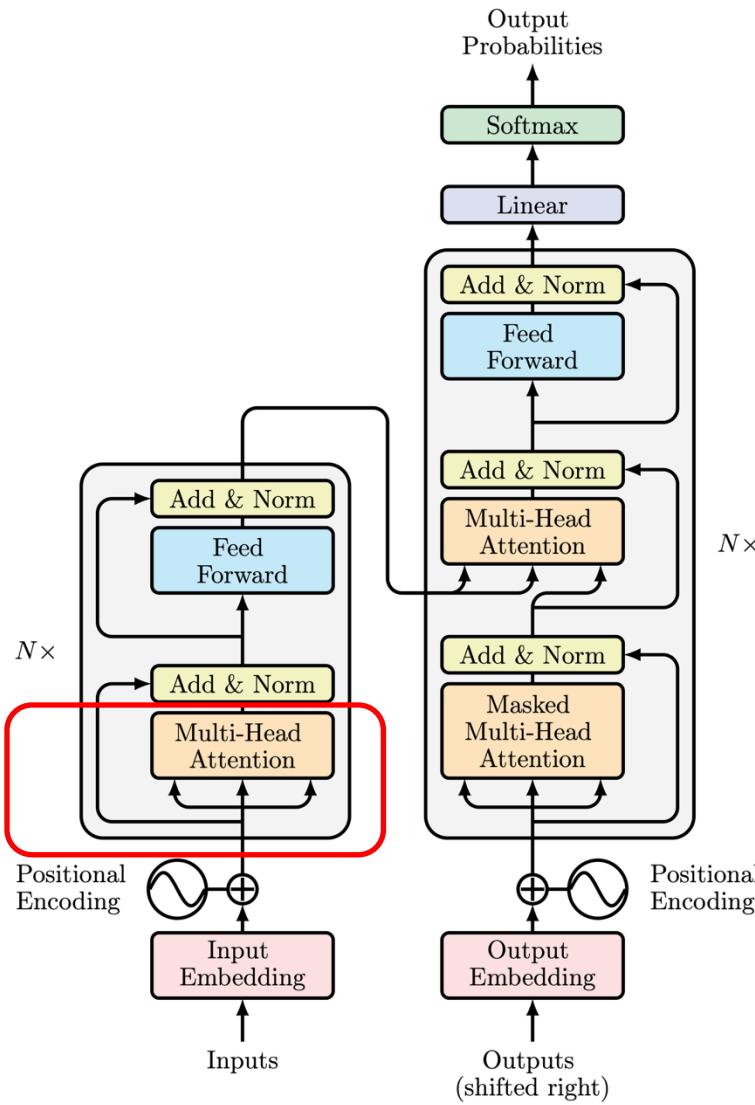
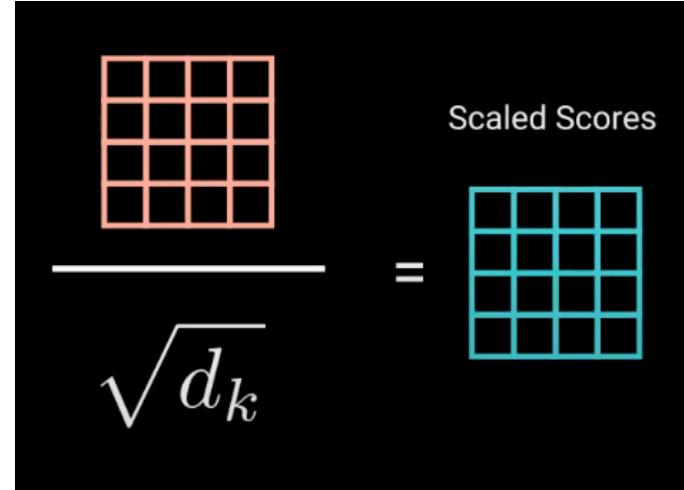
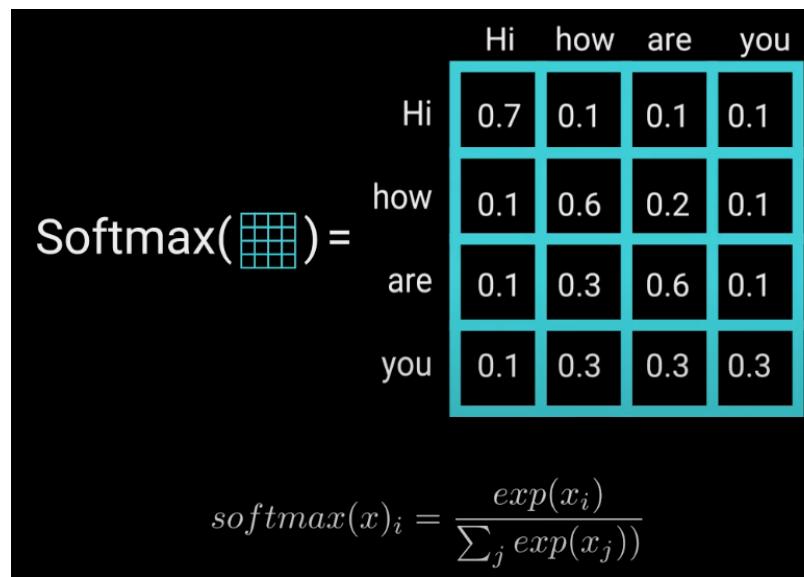
Outline

- Motivating Applications
- Graph Neural Networks (GNNs)
 - Graph representations
 - Graph isomorphism & automorphism
 - Challenges of graph data
 - Graph Neural Networks (GNNs): history & basics
 - Message passing framework of GNNs
 - Instantiation of message passing
 - **Relationship with Transformers**

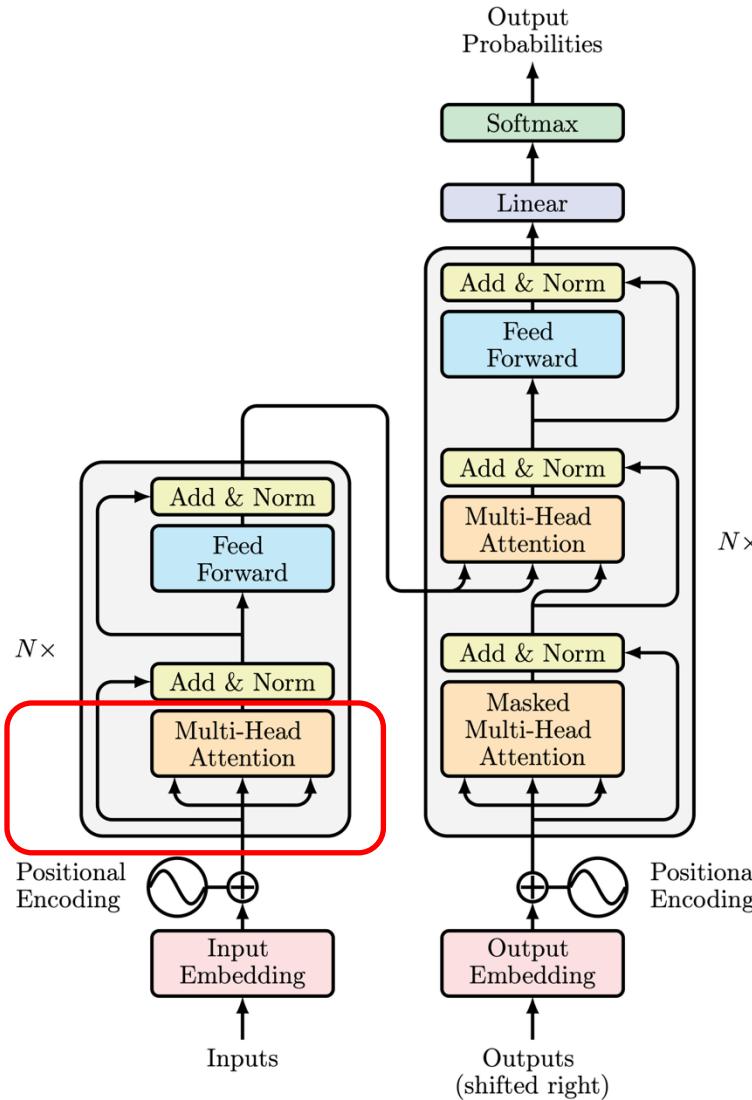
Relationships with Transformer



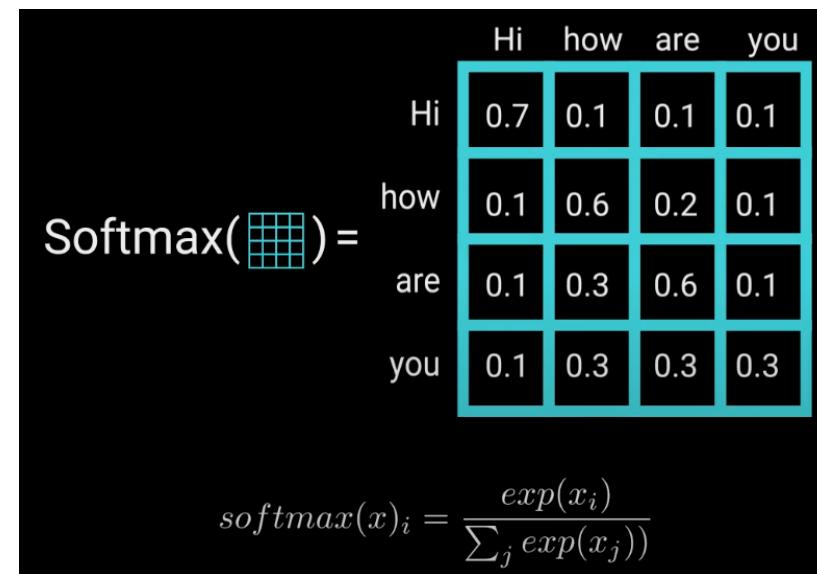
Relationships with Transformer



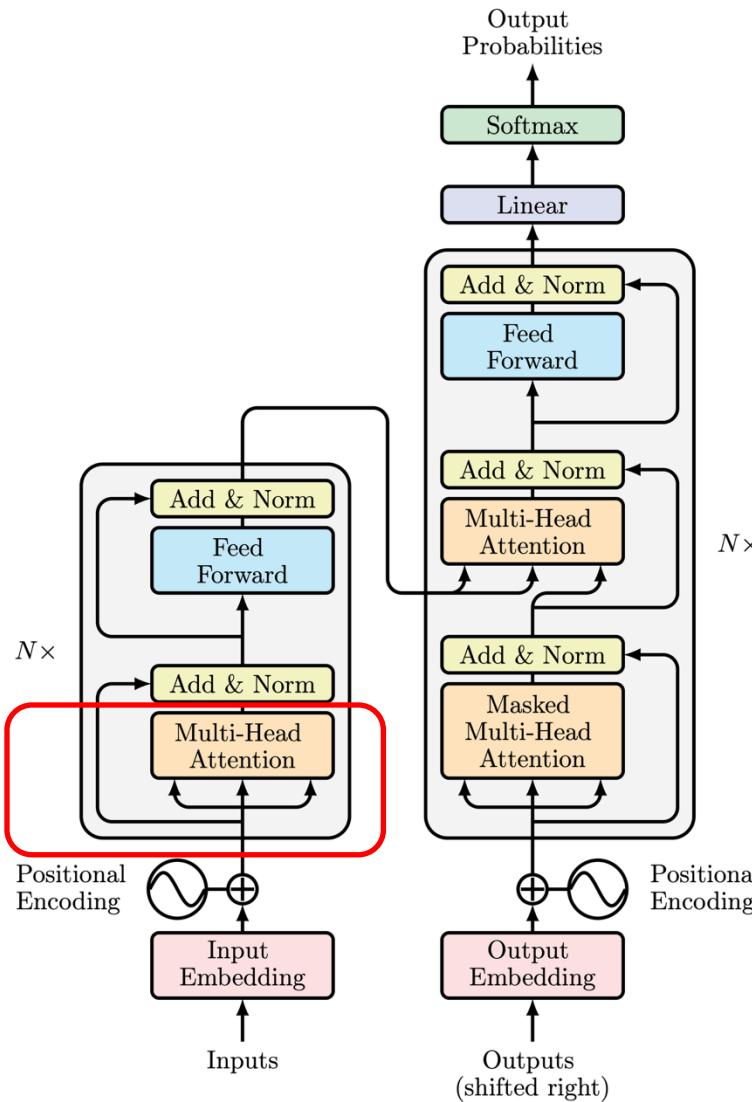
Relationships with Transformer



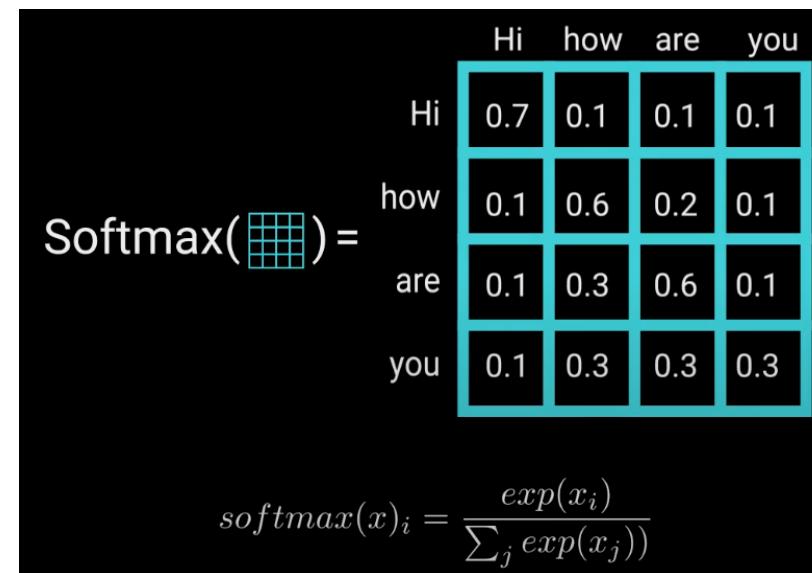
- Attention can be viewed as the weighted adjacency matrix of a fully connected graph!



Relationships with Transformer

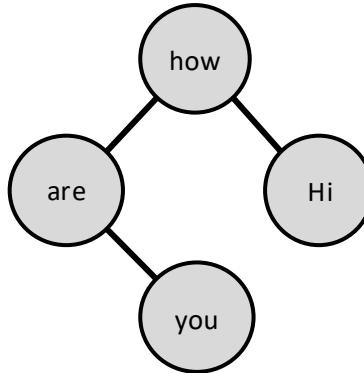


- Attention can be viewed as the weighted adjacency matrix of a fully connected graph!
- Transformers (esp. encoder) can be viewed as GNNs applied to fully connected graphs!

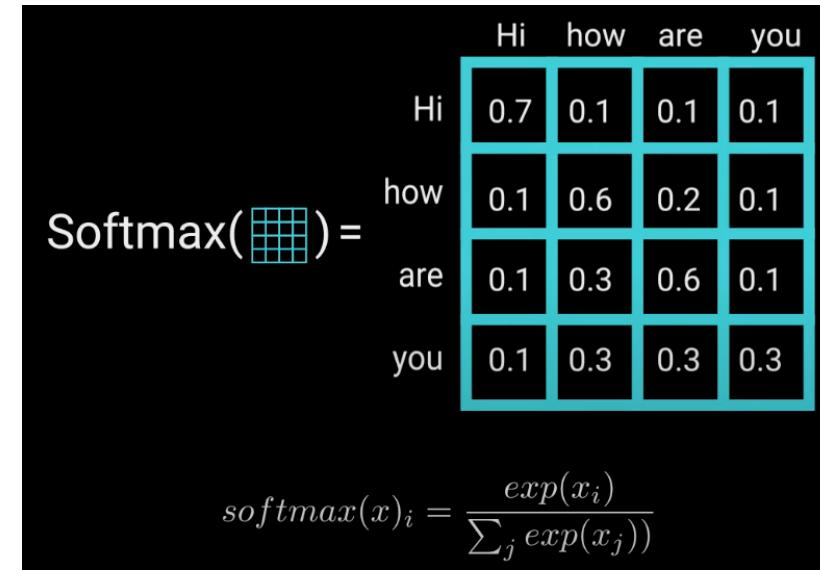


Encode Graph Structures in Transformers

- Apply the adjacency matrix as a mask to the attention and renormalize it, like Graph Attention Networks (GAT) [1]
- Encode connectivities/distances as bias of the attention [2]
- Systematic investigation of various designs for graph Transformers [3]



	Hi	how	are	you
Hi	0	1	0	1
how	1	0	0	0
are	0	0	0	1
you	1	0	1	0



[1] Veličković, Petar, et al. "Graph attention networks." ICLR. 2018. [2] Ying, Chengxuan, et al. "Do transformers really perform badly for graph representation?." NeurIPS. 2021. [3] Rampášek, Ladislav, et al. "Recipe for a general, powerful, scalable graph transformer." NeurIPS. 2022.

Image Credit: <https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0>

Questions?