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Convolution on Graphs?

e Letus review Fourier Transform and Convolution Theorem



Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [ f(H)e 2™t qt

1.e., expansion in terms of complex exponentials
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Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [ f(H)e 2™t qt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — V2 f — % f
- 2 : .
We have A(e™2miEt) = _§t2 e™2miEt — _ (2¢)2e—2mikt

e_ng t is the eigenfunction of Laplacian operator!



Fourier Transform

Given signal f (t) , the classical Fourier transform is: Inverse Fourier transform

f(f) — fR f(t)e_zm;gtdt f(t) — fR f(€)€2m£td€

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: Af = \VE: f = % f
o 2 5 o
We have A(e™2miet) = O o=2mitt — _(or¢)2e=2mikt
6_27”;& is the eigenfunction of Laplacian operator!



Convolution

Given signal f(t) , filter h(t) , the convolution 1s defined as:

0= [ s



Convolution

Given signal f(t) , filter h(t) , the convolution 1s defined as:

/ f(r)h(t — 1)
Convolution Theorem tells us that

. / F(r)h(t - T)dr = / Ao dg

where f(f) = fR f(t)e_metdt and iL(g) = f]R h(t)€_2m§tdt



Convolution

Given signal f (t) , filter h(t) , the convolution 1s defined as:

0= [ s

How can we generalize
them to graphs?

Convolution Theorem tells us that

(f * h)(¢) = / F()h(t — 7)dr = / F(e)h(e)emE dg

where f(f) = fR f(t)e_ngtdt and iL(f) = f]R h(t)€_2m£tdt



Convolution on Graphs?
* Let us review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain



Convolution on Graphs?
* Let us review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain
* How can we generalize convolution to graphs?

1. What is the Laplacian operator on graph?

2. How can we define convolution in (graph) Fourier domain?
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Graph Signal

Graph G = (V, E), graph signal (node feature) X

G A
Labelled graph Adjacency matrix
(0 1 0 0 1
e 1 01 0 1
(4) (5) (1) 01010
.‘ 0 01 0 1
e o 11010
\0 0 01 0

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix
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Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

G D

Labelled graph

e (2 0 0
0 3 0

o e‘o 0 0 2
.o 0 0 O

0 0 O

e \0 0 0

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix
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Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

(Combinatorial) Graph Laplacian:

G

Labelled graph

()
eeo 0
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

o o o o w o

D

Degree matrix

0

o o © N O

0

o O W o O

0

O W o o o

N
Dy; = Zj:l Aij

L=D-A
A
Adjacency matrix
0 0 1 0 O
0 \ ( 1 0 1 0
0 0 1 0 1
0 0 0 1 O
0 1 1 0 1
1 ) \O 0 0 1

1

O O = O =

L=D-A
Laplacian matrix

( 2 -1 0 0 -1
—1 3 —1 0 -1
0 -1 2 -1 0

0 0 -1 3 —1
-1 -1 0 —1 3
\ 0 0O 0 -1 0
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Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

(Combinatorial) Graph Laplacian:

G

Labelled graph

()
oeo 0
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

o o o o w o

D

Degree matrix

0

o o © N O

0

o O W o O

0

o W o o o

N
Dii = ;-1 Ai

L=D-A
A
Adjacency matrix
0 0 1 0 O
0 \ ( 1 0 1 0
0 0 1 0 1
0 0 0 1 O
0 1 1 0 1
1 ) \0 0 0 1

1

O O = O =

Compute difference between
current node and its neighbors!

L=D-A
Laplacian matrix

-1 0 0 -1 0\
3 -1 0 -1
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Graph Laplacian

For undirected graphs, (Combinatorial) Graph Laplacian:

e Symmetric
* Diagonally dominant

* Positive semi-definite (PSD)

* The number of connected components in the graph is the algebraic multiplicity of the eigenvalue O.

G

Labelled graph

()
ebe"o
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix
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1
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L=D-A
Laplacian matrix
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Graph Laplacian

Symmetrically Normalized Graph Laplacian:

L=D:*D—-AD :=]-D"32AD 3

Eigenvalues lie in [0, 2], why? (Try to show it by yourself!)

G D A L=D—-A

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
2 0 0 0 0O 0 1.0 0 1 0 2 -1 0 0 -1 0
5) (02000 o]lftoto1o0)l[« 5= oo o
oeo 002000 o101 0 0 -1 2 -1 0 0
.‘ 0 003 0O 0 01 0 11 0 0 -1 s —1 -1
90 000030 11010 -1 -1 0 -1 3 0
KOOUOOl)\OOOlOO)\OOO—l01)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix
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Spectral Theorem

If L 1s a symmetric matrix, we have

N
L=UANU" = > i Auu,
where U = [111, Ug, - -, IIN] contains eigenvectors of L and is orthogonal UUT = UTU =1
_)\1 -
A2
A = . contains the eigenvalues of L




Spectral Theorem

If L is a symmetric matrix, we have Spectral Decomposition
L=UAUT =%0 . Nuu,
— — i—=1 iU Yy
where U = [111, Ug, -, U N] contains eigenvectors of L and is orthogonal {J J L U TU =1
_)\1 -
A2
A = . contains the eigenvalues of L




Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [ f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)
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Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [ f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

RN*1L the Graph Fourier Transform is: Inverse Graph Fourier Transform

X =31, Ulj, il X[j)

Given graph signal X €

X=U"TX X =UX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator



Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [ f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal X & RNXL the Graph Fourier Transform is: Inverse Graph Fourier Transform
X 7] = Z;-Vzl Ulj,i| X|j] Eigenvalue corresponds to frequency!
X=U'X X=UX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator



Graph Convolution (Spectral Filtering)

Convolution;

(f % h)(t) = / F()h(t — 7)dr = / A& dg



Graph Convolution (Spectral Filtering)

Convolution:
(f % h)(t) = / F()h(t — 7)dr = / A& dg

Graph Fourier Transform:

X=U"X L=UAU"



Graph Convolution (Spectral Filtering)

Convolution:
¢ 7 2mikt
/f bt = )dr = [ Fh(©) g
R
Graph Fourier Transform:
X=U"X L=UAU"
Graph Convolution in Fourier domain (Spectral Filtering):

h@ x* X = Uh@(A)UTX
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Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

h@ x X = Uhg(A)UTX

Directly construct h requires spectral decomposition which is O(N”3)!



Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

h@ x X = Uhg(A)UTX

Directly construct h requires spectral decomposition which is O(N”3)!

Can we find some efficient construction of h?



Spectral Filters
Graph Convolution in Fourier domain (Spectral Filtering):
h@ x X = Uhg(A)UTX
Directly construct h requires spectral decomposition which is O(N”3)!

Can we find some efficient construction of h?
* Chebyshev polynomials [7]

* Graph wavelets [7]



Chebyshev Polynomials

Chebyshev polynomials of the first kind:

TQ(QIZ‘ =1
Ti(z)==x
Thi1(x) = 22T, (x) — T 1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials



https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

To(CIZ) =1
Ti(x)==x
Thi1(x) = 22T, (x) — T 1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

1.0k

0.5F

0.0f

-0.5F

-1.0}

= To(x) == Tq(x) == Ta(x) === T3z(x) == Ta(x)

.....................



https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

To(ZIZ) =1
Ti(x)==x
Thi1(x) = 22T, (x) — T 1(x)

-0.5F

-1.0}

= To(x) == Tq(x) == Ta(x) === T3z(x) == Ta(x)

1.0k
0.5F

0.0f

.....................

They provide orthonormal basis in some Sobolev space on [-1, 1]:

h(z) = anTy(z)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials



https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

= To(x) Ti(x) == Ta(x) === T3(x) === Ta(x)

Chebyshev polynomials of the first kind: |
1 |
Ti(x)==x oof

-0.5F

-1.0F

.....................

> ! dx
hw) =S an Ty () /Tn(x)Tm(@—_fm i = m =0
n=0 ! l—2 |5 fn=m#0

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials
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Spectral Filters

Chebyshev expansion:



Spectral Filters

Chebyshev expansion:

Spectral filtering:

hox X = Uhg(MNU ' X



Spectral Filters

Chebyshev expansion:

O

h(z) = anTy(z)

n=0

Spectral filtering:

hox X = Uhg(MNU ' X
Truncated Chebyshev polynomials approximation:

Z@T ZHT

ma'x




Spectral Filters

Truncated Chebyshev polynomials approximation:

Z@T ZHT

max

Graph Convolution:

h@ x X = Uh@(A)UTX




Spectral Filters

Truncated Chebyshev polynomials approximation:

Z@T ZHT

max

Graph Convolution:

h@ x X = Uh@(A)UTX

Truncated Chebyshev polynomials based Graph Convolution:



Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

- 2A -
hoxXmU (> 0,T(~—-1)|U'X

A
n—0 max



Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

- 2A -
hoxXmU (> 0,T(~—-1)|U'X

A
n—0 max

Are Chebyshev polynomials efficient?



Spectral Filters

Recall



Spectral Filters

Recall

Let




Spectral Filters

T =1
Recall o()

Ti(x)=x

Thi1(z) =22T,(x) — T,—1(x)
- 2A

Let T.(L) =UT, (—A - I) U'
We have To(L) =1

T\(L)=U <A2—A - I) U' =20/ Amax — I

- 2A 2A 2A T
Tn—l—l(L) — U <2 (m —I> TTL (m —I) _Tn—l (m —I)> U

_oU (ﬂ _ I> UTUT, (ﬂ _ I) UT —UT,_, <£ _ 1) U’

Amax )\max )\max

=2 (%LX - I) T,(L) —T,_1(L)



Spectral Filters

Recall

To(L)

ot (

2A

>\max

—I) U'



Spectral Filters

Recall

We have

- 2A
T, (L) lﬂg( —J)UT

)\max

2A
0,1,
( )\max
0

ik

hg*X%U(

n

0, Tn(L)X

[
] =

0

n

—D>UTX



Spectral Filters

Recall

We have

Let

K
ho * X ~ U (ZﬁnTn( 2A

)\max

- 1)) U'X



Spectral Filters

Recall

We have

Let

We have




Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

K
ho* X ~ Y 0,T,(X
n=0
where
To(X) =X
Ty (X) = 2LX /Amax




Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

where

What if we truncate to 1% order?

K
ho * X ~ Y 0,T,(X)
n=0
To(X) =X
T (X) = 20X /Amax — X




Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

ho * X ~ EK: 0, T, (X)
n=0
where
To(X) =X
T (X) = 20X /Amax — X
o1 (X) =2 ( Aiix _ 1) T, (X)

What if we truncate to 1% order?

That 1s Graph Convolutional Networks (GCNs) [8] !
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Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
he * X ~ ZQnTn(X)

n=0
To(X) =X
T (X) = 20X /Amax — X

Amax

Ty (X) =2 ( 2L 1) T (X) = T,_1(X)



Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
Ty (X) = 20X /Amax — X
e

1



Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
T (X) = 20X /Amax — X

> 2L ~ -
—2 (A ) R
max

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

1

L=I—-D :AD 2



Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
T (X) = 20X /Amax — X

¥ 2L L\ % e al V
n/ \ ( A /1%

T\ e T

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

1

L=I—-D :AD 2

~

Assuming )\max R 2 hg x* X ~ 90X + 81T1 (X)
~ 00X —0,D 2AD 2 X



Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X



Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD?

eigenvalues are in [0, 2]



Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD > D 3(A+1)D3

IZ> Dy =3, (A+ 1)

eigenvalues are in [0, 2] eigenvalues are in [-1, 1]



Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

h@ x* X ~ QoX + 91T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD > D 3(A+1)D3
::> Dii =Y ;(A+1);
eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

Final Form of Graph Convolution: hg* X ~ 0D~z (A4 I)D_%X



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

ho* X ~ 0D 2(A+1)D 2 X



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:
ho* X ~ 0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

N[~

hwxX~D 2(A+1)D 2 XW
LXW



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:
ho* X ~ 0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

N[~

hwxX~D 2(A+1)D 2 XW
LXW

Add nonlinearity: olhw *X)=~o <i}X W)



Graph Convolutional Networks (GCNs)

Our Spectral Filters are Localized:

~ ~

L=D2(A+I1)D"-

N~

1-step Graph Convolution: Ay * X =~ LXW

2-step Graph Convolution: Ay, * by, * X =~ LEXW, W,

Exponent of matrix power indicates how far the propagation is!



Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)



Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

h@ x X ~ (90X—|—91T1(X)



Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

h@ x X ~ (90X—|—91T1(X)

* Further simplification/approximation

N[

hox X ~ 0D 2(A+1)D"2X

hw * X ~ LXW



Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

hg x X R~ (90X—|—91T1(X)

* Further simplification/approximation

N[

ho* X ~ 0D 2(A+I)D~
hw * X ~ LXW

X

We can remedy the lost expressiveness by stacking multiple graph convolution layers!



Graph Convolutional Networks (GCNs)



Graph Convolutional Networks (GCNs)

>  GraphConv

Graphs Hy = o(LXWh)



Graph Convolutional Networks (GCNs)

>  GraphConv >  GraphConv >  Predictions

Graphs H1 = O'(LXWl) H2 = O(LH1W2)
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Message Passing GNNs

h] Node State

(t+1)-th message passing step/layer




Message Passing GNNs

h! hj SO0V  Node State

% Message Network

(t+1)-th message passing step/layer



Message Passing GNNs

l Node State

Message Network
l Compute

Messages

(CO0O) Message

(t+1)-th message passing step/layer




Message Passing GNNs

l Node State

Message Network
l Compute

Messages

BOQ) Message

Aggregated Message

(t+1)-th message passing step/layer




Message Passing GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

m! = [ ({ml]j € Ni})|  EXXD  Aggregated Message




Message Passing GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y  Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

mf = fue ((m!,j € N'})|  @XXD  Agoregated Message | [N




Message Passing GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Messages
t t 1t
m}; = fmsg(h;, hy) Message

Aggregated Message le/e@)

State Update Network %

ﬁ’lf — fagg ({m;lb < M})

% Message Network
l Compute

[elele)

(e/o/0}

4




Message Passing GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Message Network

Compute
Messages

m’; = fmsg(h}, h) Message

J

Aggregated Message

M = fagg ({mj;|j € N;}) le0e@
State Update Network %
Update
(ele70)

l Representation

f Bl B B

hi ™ = fupdate(hj, m;) Updated Node State




Message Passing GNNs

mgz — fmsg(hga hf)

mf — fagg ({m;zb < M})

h;H_l - fupdate (hf, ﬁ’lf)

f Bl B B

Node State

Message Network

Compute
Messages

Message

Aggregated Message

State Update Network

Update
Representation

Updated Node State

(t+1)-th message passing step/layer




GCNs are Message Passing Networks

+ Node State X « Graph Laplacian

~ ~

L=D"32(A+I1)D"

N~



GCNs are Message Passing Networks

+ Node State X « Graph Laplacian %
L=D"32(A+I1)D"

N~

» Aggregated I\ﬁeisage - State Update Network W %
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Revisit Spectral Filtering

Our Spectral Filters are Localized:

~ ~

L=D2(A+I1)D"-

N~

1-step Graph Convolution: Ay * X = LXW
2-step Graph Convolution: Ay, * by, * X =~ LEXW, W,
9 ( ) What if the graph diameter m is large?



Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW




Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW

o . . = L T
Spectral Decomposition: L =UANU

~

L™ =UAN"U"




Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW

Spectral Decomposition: L=UAUT

~

L™ =UAN"U"

Cubic complexity O(N"3) !



Lanczos Algorithm

Algorithm 1 : Lanczos Algorithm
1: Input: S,z, K, ¢
2: Imitialization: 3yp = 0, g0 = 0, and ¢; =

z/|z|
3: Fory=1,2,...,K:
4: z = Sq;
5: Vi = q;'_z
6: 2 =2—7¢ — Bj—1¢j-1
7 B=llele
8: If B; < e, quit
9: qj+1 = z/Bj
10:

11: Q — [C_I1,42, e 7C_IK]
12: Construct 7" following Eq. (2)

13: Eigen decomposition T’ = BRB'
14: Return V = QB and R.




Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"




Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"




Lanczos Algorithm

Tridiagonal Decomposition L = QTQT
K

|
I 1




Lanczos Algorithm

Tridiagonal Decomposition

Low-rank approximation

2

L=QTQ"




Lanczos Algorithm

Tridiagonal Decomposition L = QTQT

Low-rank approximation with top K eigenpairs

2




Multi-scale Graph Convolutional Networks
m-step GraphConv (Prior Work) H=L"XW

LanczosNet [9]:

m-step GraphConv H=UAN"U"XW

Learn Nonlinear Spectral Filter H = U[f_@\(Am) U'XW

L

(
Learning Graph Kernel / Metric Lij oc exp (—|I(X; — X;)M?)

| Sp—



SignNet

Eigenvectors of graph Laplacian are shown to be powerful node features, e.g., [10].

However, the sign-change of eigenvectors leaves the eigenspace unchanged. In other words, we need a
network that is invariant to the sign-change. SingNet [11] does the job!

Input Graph

Compute

Eigvecs
@
o=

\/
\ e

Image Credit: [11]

Model
Adjacency A >
4 Matrix
nxXmn Prediction
Node Model
I Features X >
n X d (e.g. GNN,
Transformer)
= Laplacian
m Eigenvectors 1/ —_— SignNet —_—

n X k

p([¢(vi) + ¢(—vi)li=1, k)  GNN(A,[X, SignNet(V)])




SignNet

The variant of SingNet [11], called BasisNet [11], is also invariant to the change of basis of the eigenspaces:

k eigenvectors

fVi, ..., V) = f(ViQq, ..., ViQy), partitioned  kxk block diagonal
Q; € O(d;) by eigenvalue orthogonal matrix
In particular, the model has the form: Q1
Q2
Q3

f(V1, SO Vl) = p ([qbdl(%‘/;T)]i:l) ni | Vg | Vy Vsl o

Image Credit: [11]



Specformer

Previous work employ scalar-to-scalar spectral filters

Advanced Filter Polynomial Filter Linear Filter
e.g., LanczosNet [9] e.g., ChebyNet [12] e.g., GCN [§]
Aq " Ay Aq " Ay A >
Ay " A Ay " A5 Ay >
A3 3 A3 3 A3
Ay | Ag Ay Ay Ay
A'=NNQ) AM=14+21+2%.. A =064

\‘ Scalar-to-Scalar Filter ‘/



Specformer

Previous work employ scalar-to-scalar spectral filters, which may fail to capture global graph properties.

Spectrum -
Information Example Definition Scalar Input Set Input

Algebraic B °
Connectivity Count(4 = 0) o

: 4 1
ww O ©
'\\Z/ PN n::\\i:_..://”
Y IS —

Clusterability {/O\/O\é ’Z > /1; - /1; . S [



Specformer

Instead of employing scalar-to-scalar spectral filters, Specformer [13] uses set-to-set spectral filters:

Linear
{ Lx 1 ) { LX N
Add & Norm Resi.dual
Feed Forward Graph
Network Convolution
Add & Norm Filter
= T
Multi-head
Attention Dquder
b
Ny J N J
Eigenvalue Node
Representations Representations

Eigenvalue
Encoding

Eigenvalues

] B

Ao =0 A Ay A3 A Ay, frequencies

(), 2i) = sin (e)\/mooo?’*?/d)

o(\, 2 + 1) = cos (eA/lOOOO%/d)

Due to the eigenvalue encoding, the
spectral filter is permutation invariant!
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