EECE 571F: Advanced Topics in Deep Learning

Lecture 4: Graph Neural Networks ||
Graph Convolution Models

Renjie Liao

University of British Columbia
Winter, Term 2, 2025

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials

Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNSs)
Spectral Graph Neural Networks

Convolution on Graphs?

e Letus review Fourier Transform and Convolution Theorem

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [p ft)e?mistdt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: Af — v2f — %f

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: Af — v2f — %f

- 2 : .
We have A(e™2miet) = O o=2mitt — _(or¢)2e=2mikt

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — V2 f — % f
- 2 : .
We have A(e™2miEt) = _§t2 e™2miEt — _ (2¢)2e—2mikt

e_ng t is the eigenfunction of Laplacian operator!

Fourier Transform

Given signal f (t) , the classical Fourier transform is: Inverse Fourier transform

f(f) — fR f(t)e_zm;gtdt f(t) — fR f(€)€2m£td€

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: Af = \VE: f = % f
o 2 5 o
We have A(e™2miet) = O o=2mitt — _(or¢)2e=2mikt
6_27”;& is the eigenfunction of Laplacian operator!

Convolution

Given signal f(t) , filter h(t) , the convolution 1s defined as:

0= [s

Convolution

Given signal f(t) , filter h(t) , the convolution 1s defined as:

/ f(r)h(t — 1)
Convolution Theorem tells us that

. / F(r)h(t - T)dr = / Ao dg

where f(f) = fR f(t)e_metdt and iL(g) = f]R h(t)€_2m§tdt

Convolution

Given signal f (t) , filter h(t) , the convolution 1s defined as:

0= [s

How can we generalize
them to graphs?

Convolution Theorem tells us that

(f * h)(¢) = / F()h(t — 7)dr = / F(e)h(e)emE dg

where f(f) = fR f(t)e_ngtdt and iL(f) = f]R h(t)€_2m£tdt

Convolution on Graphs?
* Let us review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain

Convolution on Graphs?
* Let us review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain
* How can we generalize convolution to graphs?

1. What is the Laplacian operator on graph?

2. How can we define convolution in (graph) Fourier domain?

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials
Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNSs)
Spectral Graph Neural Networks

Graph Signal

Graph G = (V, E), graph signal (node feature) X

G A
Labelled graph Adjacency matrix
(0 1 0 0 1
e 1 01 0 1
(4) (5) (1) 01010
.‘ 0 01 0 1
e o 11010
\0 0 01 0

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

G D

Labelled graph

e (2 0 0
0 3 0

o e‘o 0 0 2
.o 0 0 O

0 0 O

e \0 0 0

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

0

o O W o O

Degree matrix

0

o W o o o

N
Dii =521 Aij

1

o = © = O

A

Adjacency matrix

0

o P o =

= =2 o =2 O O

1

O O = O =

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

(Combinatorial) Graph Laplacian:

G

Labelled graph

()
eeo 0
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

o o o o w o

D

Degree matrix

0

o o © N O

0

o O W o O

0

O W o o o

N
Dy; = Zj:l Aij

L=D-A
A
Adjacency matrix
0 0 1 0 O
0 \ (1 0 1 0
0 0 1 0 1
0 0 0 1 O
0 1 1 0 1
1) \O 0 0 1

1

O O = O =

L=D-A
Laplacian matrix

(2 -1 0 0 -1
—1 3 —1 0 -1
0 -1 2 -1 0

0 0 -1 3 —1
-1 -1 0 —1 3
\ 0 0O 0 -1 0

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

(Combinatorial) Graph Laplacian:

G

Labelled graph

()
oeo 0
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

o o o o w o

D

Degree matrix

0

o o © N O

0

o O W o O

0

o W o o o

N
Dii = ;-1 Ai

L=D-A
A
Adjacency matrix
0 0 1 0 O
0 \ (1 0 1 0
0 0 1 0 1
0 0 0 1 O
0 1 1 0 1
1) \0 0 0 1

1

O O = O =

Compute difference between
current node and its neighbors!

L=D-A
Laplacian matrix

-1 0 0 -1 0\
3 -1 0 -1

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

For undirected graphs, (Combinatorial) Graph Laplacian:

e Symmetric
* Diagonally dominant

* Positive semi-definite (PSD)

* The number of connected components in the graph is the algebraic multiplicity of the eigenvalue O.

G

Labelled graph

()
ebe"o
oull

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

o o o o w o

D

Degree matrix

0

o O O N O

0

o O w o O

0

O W o o o

1

o = © = O

A
0 0
10
0 1
1 0
0 1
0 1

Adjacency matrix

1

O O = O =

L=D-A
Laplacian matrix

(2 -1 0 0 -1

—1 3 —1 0 -1

0 -1 2 -1 0

0 0 -1 3 —1

-1 -1 0 —1 3

\000—10

0)
0
0
-1
0
1)

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Symmetrically Normalized Graph Laplacian:

L=D:*D—-AD :=]-D"32AD 3

Eigenvalues lie in [0, 2], why? (Try to show it by yourself!)

G D A L=D—-A

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
2 0 0 0 0O 0 1.0 0 1 0 2 -1 0 0 -1 0
5) (02000 o]lftoto1o0)l[« 5= oo o
oeo 002000 o101 0 0 -1 2 -1 0 0
.‘ 0 003 0O 0 01 0 11 0 0 -1 s —1 -1
90 000030 11010 -1 -1 0 -1 3 0
KOOUOOl)\OOOlOO)\OOO—l01)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Spectral Theorem

If L 1s a symmetric matrix, we have

N
L=UANU" = > i Auu,
where U = [111, Ug, - -, IIN] contains eigenvectors of L and is orthogonal UUT = UTU =1
_)\1 -
A2
A = . contains the eigenvalues of L

Spectral Theorem

If L is a symmetric matrix, we have Spectral Decomposition
L=UAUT =%0 . Nuu,
— — i—=1 iU Yy
where U = [111, Ug, -, U N] contains eigenvectors of L and is orthogonal {J J L U TU =1
_)\1 -
A2
A = . contains the eigenvalues of L

Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

RNXL the Graph Fourier Transform is:

X =31, Ulj, il X[j)

Given graph signal X €

X=U"TX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

RN*1L the Graph Fourier Transform is: Inverse Graph Fourier Transform

X =31, Ulj, il X[j)

Given graph signal X €

X=U"TX X =UX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Graph Fourier Transform

Given signal f(t) , the classical Fourier transform is:

F(&) = [f(H)e 2™t qt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal X & RNXL the Graph Fourier Transform is: Inverse Graph Fourier Transform
X 7] = Z;-Vzl Ulj,i| X|j] Eigenvalue corresponds to frequency!
X=U'X X=UX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Graph Convolution (Spectral Filtering)

Convolution;

(f % h)(t) = / F()h(t — 7)dr = / A& dg

Graph Convolution (Spectral Filtering)

Convolution:
(f % h)(t) = / F()h(t — 7)dr = / A& dg

Graph Fourier Transform:

X=U"X L=UAU"

Graph Convolution (Spectral Filtering)

Convolution:
¢ 7 2mikt
/f bt =)dr = [Fh(©) g
R
Graph Fourier Transform:
X=U"X L=UAU"
Graph Convolution in Fourier domain (Spectral Filtering):

h@ x* X = Uh@(A)UTX

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials

Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNSs)
Spectral Graph Neural Networks

Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

h@ x X = Uhg(A)UTX

Directly construct h requires spectral decomposition which is O(N”3)!

Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

h@ x X = Uhg(A)UTX

Directly construct h requires spectral decomposition which is O(N”3)!

Can we find some efficient construction of h?

Spectral Filters
Graph Convolution in Fourier domain (Spectral Filtering):
h@ x X = Uhg(A)UTX
Directly construct h requires spectral decomposition which is O(N”3)!

Can we find some efficient construction of h?
* Chebyshev polynomials [7]

* Graph wavelets [7]

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

TQ(QIZ‘ =1
Ti(z)==x
Thi1(x) = 22T, (x) — T 1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

To(CIZ) =1
Ti(x)==x
Thi1(x) = 22T, (x) — T 1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

1.0k

0.5F

0.0f

-0.5F

-1.0}

= To(x) == Tq(x) == Ta(x) === T3z(x) == Ta(x)

.....................

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

To(ZIZ) =1
Ti(x)==x
Thi1(x) = 22T, (x) — T 1(x)

-0.5F

-1.0}

= To(x) == Tq(x) == Ta(x) === T3z(x) == Ta(x)

1.0k
0.5F

0.0f

.....................

They provide orthonormal basis in some Sobolev space on [-1, 1]:

h(z) = anTy(z)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

= To(x) Ti(x) == Ta(x) === T3(x) === Ta(x)

Chebyshev polynomials of the first kind: |
1 |
Ti(x)==x oof

-0.5F

-1.0F

.....................

> ! dx
hw) =S an Ty () /Tn(x)Tm(@—_fm i = m =0
n=0 ! l—2 |5 fn=m#0

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Spectral Filters

Chebyshev expansion:

Spectral Filters

Chebyshev expansion:

Spectral filtering:

hox X = Uhg(MNU ' X

Spectral Filters

Chebyshev expansion:

O

h(z) = anTy(z)

n=0

Spectral filtering:

hox X = Uhg(MNU ' X
Truncated Chebyshev polynomials approximation:

Z@T ZHT

ma'x

Spectral Filters

Truncated Chebyshev polynomials approximation:

Z@T ZHT

max

Graph Convolution:

h@ x X = Uh@(A)UTX

Spectral Filters

Truncated Chebyshev polynomials approximation:

Z@T ZHT

max

Graph Convolution:

h@ x X = Uh@(A)UTX

Truncated Chebyshev polynomials based Graph Convolution:

Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

- 2A -
hoxXmU (> 0,T(~—-1)|U'X

A
n—0 max

Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

- 2A -
hoxXmU (> 0,T(~—-1)|U'X

A
n—0 max

Are Chebyshev polynomials efficient?

Spectral Filters

Recall

Spectral Filters

Recall

Let

Spectral Filters

T =1
Recall o()

Ti(x)=x

Thi1(z) =22T,(x) — T,—1(x)
- 2A

Let T.(L) =UT, (—A - I) U'
We have To(L) =1

T\(L)=U <A2—A - I) U' =20/ Amax — I

- 2A 2A 2A T
Tn—l—l(L) — U <2 (m —I> TTL (m —I) _Tn—l (m —I)> U

_oU (ﬂ _ I> UTUT, (ﬂ _ I) UT —UT,_, <£ _ 1) U’

Amax)\max)\max

=2 (%LX - I) T,(L) —T,_1(L)

Spectral Filters

Recall

To(L)

ot (

2A

>\max

—I) U'

Spectral Filters

Recall

We have

- 2A
T, (L) lﬂg(—J)UT

)\max

2A
0,1,
()\max
0

ik

hg*X%U(

n

0, Tn(L)X

[
] =

0

n

—D>UTX

Spectral Filters

Recall

We have

Let

K
ho * X ~ U (ZﬁnTn(2A

)\max

- 1)) U'X

Spectral Filters

Recall

We have

Let

We have

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

K
ho* X ~ Y 0,T,(X
n=0
where
To(X) =X
Ty (X) = 2LX /Amax

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

where

What if we truncate to 1% order?

K
ho * X ~ Y 0,T,(X)
n=0
To(X) =X
T (X) = 20X /Amax — X

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

ho * X ~ EK: 0, T, (X)
n=0
where
To(X) =X
T (X) = 20X /Amax — X
o1 (X) =2 (Aiix _ 1) T, (X)

What if we truncate to 1% order?

That 1s Graph Convolutional Networks (GCNs) [8] !

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials

Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNSs)
Spectral Graph Neural Networks

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
he * X ~ ZQnTn(X)

n=0
To(X) =X
T (X) = 20X /Amax — X

Amax

Ty (X) =2 (2L 1) T (X) = T,_1(X)

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
Ty (X) = 20X /Amax — X
e

1

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
T (X) = 20X /Amax — X

> 2L ~ -
—2 (A) R
max

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

1

L=I—-D :AD 2

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =Y 0,Th(X) ho x X ~ 0 X + 0,T1(X)
n=0
To(X) =X
T (X) = 20X /Amax — X

¥ 2L L\ % e al V
n/ \ (A /1%

T\ e T

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

1

L=I—-D :AD 2

~

Assuming)\max R 2 hg x* X ~ 90X + 81T1 (X)
~ 00X —0,D 2AD 2 X

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD?

eigenvalues are in [0, 2]

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

ho * X =~ 00X + 6,T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD > D 3(A+1)D3

IZ> Dy =3, (A+ 1)

eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

h@ x* X ~ QoX + 91T1(X)
~0,X —0, D 2AD X
.y (1+D—%AD—%) X

[+D 2AD > D 3(A+1)D3
::> Dii =Y ;(A+1);
eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

Final Form of Graph Convolution: hg* X ~ 0D~z (A4 I)D_%X

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

ho* X ~ 0D 2(A+1)D 2 X

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:
ho* X ~ 0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

N[~

hwxX~D 2(A+1)D 2 XW
LXW

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:
ho* X ~ 0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

N[~

hwxX~D 2(A+1)D 2 XW
LXW

Add nonlinearity: olhw *X)=~o <i}X W)

Graph Convolutional Networks (GCNs)

Our Spectral Filters are Localized:

~ ~

L=D2(A+I1)D"-

N~

1-step Graph Convolution: Ay * X =~ LXW

2-step Graph Convolution: Ay, * by, * X =~ LEXW, W,

Exponent of matrix power indicates how far the propagation is!

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

h@ x X ~ (90X—|—91T1(X)

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

h@ x X ~ (90X—|—91T1(X)

* Further simplification/approximation

N[

hox X ~ 0D 2(A+1)D"2X

hw * X ~ LXW

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

hz) =) anTy(x)

* Truncate the expansion at 1% order for efficiency

~

hg x X R~ (90X—|—91T1(X)

* Further simplification/approximation

N[

ho* X ~ 0D 2(A+I)D~
hw * X ~ LXW

X

We can remedy the lost expressiveness by stacking multiple graph convolution layers!

Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs)

> GraphConv

Graphs Hy = o(LXWh)

Graph Convolutional Networks (GCNs)

> GraphConv > GraphConv > Predictions

Graphs H1 = O'(LXWl) H2 = O(LH1W2)

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials

Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNs)
Spectral Graph Neural Networks

Message Passing GNNs

h] Node State

(t+1)-th message passing step/layer

Message Passing GNNs

h! hj SO0V Node State

% Message Network

(t+1)-th message passing step/layer

Message Passing GNNs

l Node State

Message Network
l Compute

Messages

(CO0O) Message

(t+1)-th message passing step/layer

Message Passing GNNs

l Node State

Message Network
l Compute

Messages

BOQ) Message

Aggregated Message

(t+1)-th message passing step/layer

Message Passing GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

m! = [({ml]j € Ni})| EXXD Aggregated Message

Message Passing GNNs

(t+1)-th message passing step/layer

h! h! ([SAO)Y Node State
Message Network
Compute
Messages
m}; = fumse(hj, hi) XX Message

mf = fue ((m!,j € N'})| @XXD Agoregated Message | [N

Message Passing GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Messages
t t 1t
m}; = fmsg(h;, hy) Message

Aggregated Message le/e@)

State Update Network %

ﬁ’lf — fagg ({m;lb < M})

% Message Network
l Compute

[elele)

(e/o/0}

4

Message Passing GNNs

t+1)-th message passing step/layer
Node State (tF1) &P S SEpray

Message Network

Compute
Messages

m’; = fmsg(h}, h) Message

J

Aggregated Message

M = fagg ({mj;|j € N;}) le0e@
State Update Network %
Update
(ele70)

l Representation

f Bl B B

hi ™ = fupdate(hj, m;) Updated Node State

Message Passing GNNs

mgz — fmsg(hga hf)

mf — fagg ({m;zb < M})

h;H_l - fupdate (hf, ﬁ’lf)

f Bl B B

Node State

Message Network

Compute
Messages

Message

Aggregated Message

State Update Network

Update
Representation

Updated Node State

(t+1)-th message passing step/layer

GCNs are Message Passing Networks

+ Node State X « Graph Laplacian

~ ~

L=D"32(A+I1)D"

N~

GCNs are Message Passing Networks

+ Node State X « Graph Laplacian %
L=D"32(A+I1)D"

N~

» Aggregated I\ﬁeisage - State Update Network W %

Outline

Laplacian, Fourier Transforms, and Convolution

Graph Laplacian, Graph Fourier Transforms, and Graph Convolution

Spectral Filtering and Chebyshev Polynomials

Graph Convolutional Networks (GCNs)

Relation between GCNs and Message Passing Neural Networks (MPNNSs)
Spectral Graph Neural Networks

Revisit Spectral Filtering

Our Spectral Filters are Localized:

~ ~

L=D2(A+I1)D"-

N~

1-step Graph Convolution: Ay * X = LXW
2-step Graph Convolution: Ay, * by, * X =~ LEXW, W,
9 () What if the graph diameter m is large?

Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW

Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW

o . . = L T
Spectral Decomposition: L =UANU

~

L™ =UAN"U"

Revisit Spectral Filtering

Our Spectral Filters are Localized: 3
m-step Graph Convolution: hw * X ~ L XW

Spectral Decomposition: L=UAUT

~

L™ =UAN"U"

Cubic complexity O(N"3) !

Lanczos Algorithm

Algorithm 1 : Lanczos Algorithm
1: Input: S,z, K, ¢
2: Imitialization: 3yp = 0, g0 = 0, and ¢; =

z/|z|
3: Fory=1,2,...,K:
4: z = Sq;
5: Vi = q;'_z
6: 2 =2—7¢ — Bj—1¢j-1
7 B=llele
8: If B; < e, quit
9: qj+1 = z/Bj
10:

11: Q — [C_I1,42, e 7C_IK]
12: Construct 7" following Eq. (2)

13: Eigen decomposition T’ = BRB'
14: Return V = QB and R.

Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition L = QTQT
K

|
I 1

Lanczos Algorithm

Tridiagonal Decomposition

Low-rank approximation

2

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition L = QTQT

Low-rank approximation with top K eigenpairs

2

Multi-scale Graph Convolutional Networks
m-step GraphConv (Prior Work) H=L"XW

LanczosNet [9]:

m-step GraphConv H=UAN"U"XW

Learn Nonlinear Spectral Filter H = U[f_@\(Am) U'XW

L

(
Learning Graph Kernel / Metric Lij oc exp (—|I(X; — X;)M?)

| Sp—

SignNet

Eigenvectors of graph Laplacian are shown to be powerful node features, e.g., [10].

However, the sign-change of eigenvectors leaves the eigenspace unchanged. In other words, we need a
network that is invariant to the sign-change. SingNet [11] does the job!

Input Graph

Compute

Eigvecs
@
o=

\/
\ e

Image Credit: [11]

Model
Adjacency A >
4 Matrix
nxXmn Prediction
Node Model
I Features X >
n X d (e.g. GNN,
Transformer)
= Laplacian
m Eigenvectors 1/ —_— SignNet —_—

n X k

p([¢(vi) + ¢(—vi)li=1, k) GNN(A,[X, SignNet(V)])

SignNet

The variant of SingNet [11], called BasisNet [11], is also invariant to the change of basis of the eigenspaces:

k eigenvectors

fVi, ..., V) = f(ViQq, ..., ViQy), partitioned kxk block diagonal
Q; € O(d;) by eigenvalue orthogonal matrix
In particular, the model has the form: Q1
Q2
Q3

f(V1, SO Vl) = p ([qbdl(%‘/;T)]i:l) ni | Vg | Vy Vsl o

Image Credit: [11]

Specformer

Previous work employ scalar-to-scalar spectral filters

Advanced Filter Polynomial Filter Linear Filter
e.g., LanczosNet [9] e.g., ChebyNet [12] e.g., GCN [§]
Aq " Ay Aq " Ay A >
Ay " A Ay " A5 Ay >
A3 3 A3 3 A3
Ay | Ag Ay Ay Ay
A'=NNQ) AM=14+21+2%.. A =064

\‘ Scalar-to-Scalar Filter ‘/

Specformer

Previous work employ scalar-to-scalar spectral filters, which may fail to capture global graph properties.

Spectrum -
Information Example Definition Scalar Input Set Input

Algebraic B °
Connectivity Count(4 = 0) o

: 4 1
ww O ©
'\\Z/ PN n::\\i:_..://”
Y IS —

Clusterability {/O\/O\é ’Z > /1; - /1; . S [

Specformer

Instead of employing scalar-to-scalar spectral filters, Specformer [13] uses set-to-set spectral filters:

Linear
{ Lx 1) { LX N
Add & Norm Resi.dual
Feed Forward Graph
Network Convolution
Add & Norm Filter
= T
Multi-head
Attention Dquder
b
Ny J N J
Eigenvalue Node
Representations Representations

Eigenvalue
Encoding

Eigenvalues

] B

Ao =0 A Ay A3 A Ay, frequencies

(), 2i) = sin (e)\/mooo?’*?/d)

o(\, 2 + 1) = cos (eA/lOOOO%/d)

Due to the eigenvalue encoding, the
spectral filter is permutation invariant!

References

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions
on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure.
In Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A leaming algorithm for Boltzmann machines. Cognitive science, 9(1),
pp.147-169.

[4] Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A. and Vandergheynst, P., 2013. The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine, 30(3),
pp-83-98.

[5] Ortega, A., Frossard, P., Kovacevi¢, J., Moura, J.M. and Vandergheynst, P., 2018. Graph signal processing: Overview, challenges,
and applications. Proceedings of the IEEE, 106(5), pp.808-828.

[6] Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P., 2017. Geometric deep learning: going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4), pp.18-42.

[7] Hammond, D.K., Vandergheynst, P. and Gribonval, R., 2011. Wavelets on graphs via spectral graph theory. Applied and
Computational Harmonic Analysis, 30(2), pp.129-150.

[8] Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

[9] Liao, R., Zhao, Z., Urtasun, R. and Zemel, R.S., 2019. Lanczosnet: Multi-scale deep graph convolutional networks. arXiv preprint
arXiv:1901.01484.

References

[10] Rampasek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G. and Beaini, D., 2022. Recipe for a general, powerful, scalable graph
transformer. Advances in Neural Information Processing Systems, 35, pp.14501-14515.

[11] Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron, H. and Jegelka, S., 2022. Sign and basis invariant networks for spectral
graph representation learning. arXiv preprint arXiv:2202.13013.

[12] Defferrard, Michaél, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized
spectral filtering." Advances in neural information processing systems 29 (2016).

[13] Bo, D., Shi, C., Wang, L. and Liao, R., 2023. Specformer: Spectral graph neural networks meet transformers. arXiv preprint
arXiv:2303.01028.

Questions?

	Slide 1: EECE 571F: Advanced Topics in Deep Learning Lecture 4: Graph Neural Networks II Graph Convolution Models
	Slide 2: Outline
	Slide 3: Convolution on Graphs?
	Slide 4: Fourier Transform
	Slide 5: Fourier Transform
	Slide 6: Fourier Transform
	Slide 7: Fourier Transform
	Slide 8: Fourier Transform
	Slide 9: Convolution
	Slide 10: Convolution
	Slide 11: Convolution
	Slide 12: Convolution on Graphs?
	Slide 13: Convolution on Graphs?
	Slide 14: Outline
	Slide 15: Graph Signal
	Slide 16: Graph Laplacian
	Slide 17: Graph Laplacian
	Slide 18: Graph Laplacian
	Slide 19: Graph Laplacian
	Slide 20: Graph Laplacian
	Slide 21: Spectral Theorem
	Slide 22: Spectral Theorem
	Slide 23: Graph Fourier Transform
	Slide 24: Graph Fourier Transform
	Slide 25: Graph Fourier Transform
	Slide 26: Graph Fourier Transform
	Slide 27: Graph Convolution (Spectral Filtering)
	Slide 28: Graph Convolution (Spectral Filtering)
	Slide 29: Graph Convolution (Spectral Filtering)
	Slide 30: Outline
	Slide 31: Spectral Filters
	Slide 32: Spectral Filters
	Slide 33: Spectral Filters
	Slide 34: Chebyshev Polynomials
	Slide 35: Chebyshev Polynomials
	Slide 36: Chebyshev Polynomials
	Slide 37: Chebyshev Polynomials
	Slide 38: Spectral Filters
	Slide 39: Spectral Filters
	Slide 40: Spectral Filters
	Slide 41: Spectral Filters
	Slide 42: Spectral Filters
	Slide 44: Spectral Filters
	Slide 45: Spectral Filters
	Slide 46: Spectral Filters
	Slide 47: Spectral Filters
	Slide 48: Spectral Filters
	Slide 49: Spectral Filters
	Slide 50: Spectral Filters
	Slide 51: Spectral Filters
	Slide 52: Spectral Filters
	Slide 53: Spectral Filters
	Slide 54: Spectral Filters
	Slide 55: Spectral Filters
	Slide 56: Outline
	Slide 57: Graph Convolutional Networks (GCNs)
	Slide 58: Graph Convolutional Networks (GCNs)
	Slide 59: Graph Convolutional Networks (GCNs)
	Slide 60: Graph Convolutional Networks (GCNs)
	Slide 61: Graph Convolutional Networks (GCNs)
	Slide 62: Graph Convolutional Networks (GCNs)
	Slide 63: Graph Convolutional Networks (GCNs)
	Slide 64: Graph Convolutional Networks (GCNs)
	Slide 65: Graph Convolutional Networks (GCNs)
	Slide 66: Graph Convolutional Networks (GCNs)
	Slide 67: Graph Convolutional Networks (GCNs)
	Slide 68: Graph Convolutional Networks (GCNs)
	Slide 69: Graph Convolutional Networks (GCNs)
	Slide 70: Graph Convolutional Networks (GCNs)
	Slide 71: Graph Convolutional Networks (GCNs)
	Slide 72: Graph Convolutional Networks (GCNs)
	Slide 73: Graph Convolutional Networks (GCNs)
	Slide 74: Graph Convolutional Networks (GCNs)
	Slide 75: Graph Convolutional Networks (GCNs)
	Slide 76: Outline
	Slide 77: Message Passing GNNs
	Slide 78: Message Passing GNNs
	Slide 79: Message Passing GNNs
	Slide 80: Message Passing GNNs
	Slide 81: Message Passing GNNs
	Slide 82: Message Passing GNNs
	Slide 83: Message Passing GNNs
	Slide 84: Message Passing GNNs
	Slide 85: Message Passing GNNs
	Slide 86
	Slide 87
	Slide 88: Outline
	Slide 89: Revisit Spectral Filtering
	Slide 90: Revisit Spectral Filtering
	Slide 91: Revisit Spectral Filtering
	Slide 92: Revisit Spectral Filtering
	Slide 93: Lanczos Algorithm
	Slide 94: Lanczos Algorithm
	Slide 95: Lanczos Algorithm
	Slide 96: Lanczos Algorithm
	Slide 97: Lanczos Algorithm
	Slide 98: Lanczos Algorithm
	Slide 99: Multi-scale Graph Convolutional Networks
	Slide 100: SignNet
	Slide 101: SignNet
	Slide 102: Specformer
	Slide 103: Specformer
	Slide 104: Specformer
	Slide 105: References
	Slide 106: References
	Slide 107: Questions?

