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Groups
A Group (G,-) is a set G equipped with a binary operation - (called product) that satisfyies four axioms:
e Closure: Vg,h € G,g-h € G.
e Associativity: (g-h)-k=g-(h-k).
e Identity: de€ G s.t. g-e=e-g=g.
o Inverse: Vg€ G, g7 €Gst. g-g ' =e.
Examples: The Cyclic Group of Order 4 C4: This group represents the symmetries of a square that can
be reached via discrete rotations with angles {0°,90°,180°,270°}.
e Group Elements: {0°,90°,180°,270°}

e Group Operation: The composition of rotations. Because we are dealing with a circle, the result
is calculated modulo 360°. For example, 90° - 180° = 270°, 270° - 180° = 450°. Since 450° = 90°
(mod 360), the result is 90°.

e Identity (e): 0°. For any angle g € Cy: ¢g-0°=0°-g =g.

e Inverse (¢~ 1): The inverse is the operation that “undoes” a rotation, returning the object to its original
orientation. For example, inverse of 0°: 0°, inverse of 90°: 270° since 90° - 270° = 360° = 0°, and
inverse of 180°: 180° since 180° - 180° = 360° = 0°.

The Translation Group: For a d-dimensional space (usually d = 2 for images), the translation group is
the set of all vectors R? (continuous) or Z? (discrete) under the operation of vector addition.

e Group Elements: A vector v € R? (continuous) or v € Z¢ (discrete) representing a shift. For example,
g = (3,—2) means “shift 3 units right and 2 units down.”

e Group Operation (+): The “product” of two translations g; and gs is their vector sum: g; + go.
e Identity (e): The zero vector 0 = (0,0). Shifting by zero changes nothing.

e Inverse (g1): For a shift v, the inverse is —v. If you shift right by 3, you undo it by shifting left by 3.

Subgroups

Let (G,-) be a group. A subset H C G is a subgroup if it satisfies three conditions:
e Identity: The identity element e of G is in H.
e Closure: If hy,hy € H, then hy - hy € H.
o Inverses: If h € H, then h~! € H.
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Examples: The Trivial Subgroup: For any group G, the set containing only the identity {e} is the smallest
possible subgroup.

Integers in Real Numbers: (Z,+) is a subgroup of (R,+). If you add two integers, you get an integer;
the negative of an integer is an integer; and 0 is an integer.

Group Homomorphism

Let (G,-) and (H,*) be two groups. A function ¢ : G — H is a group homomorphism if, for all a,b € G,
the following identity holds:

¢(a-b) = ¢(a) * ¢(b).

In other words, the result is the same whether you perform the group operation before or after applying
the map. A homomorphism is a map that respects the group operation. It allows us to relate the structure
of one group to another, even if the groups have different sizes.

Examples: Determinants: Consider the group of invertible nxn matrices under multiplication, GL(n,R),
and the group of non-zero real numbers under multiplication, (R \ {0}, x).

The determinant map det : GL(n,R) — R\ {0} is a homomorphism because:

det(A - B) = det(A) x det(B).

This homomorphism collapses a complex, high-dimensional space (matrices) into a simpler one (scalars)
while preserving the “logic” of multiplication.

Group Isomorphism

A homomorphism ¢ : G — H is an isomorphism if ¢ is a bijection (it is both injective/one-to-one and
surjective/onto). If such a map exists, we say G and H are isomorphic, denoted as G = H.

An isomorphism implies that G and H are identical in structure; they only differ in the “names” of their
elements.

Examples: Logarithms: The group of positive real numbers under multiplication (R, x) is isomorphic to
the group of all real numbers under addition (R, +) via ¢(z) = ln(z), since

In(a - b) = In(a) 4 In(b).

Rotations and Integers: The group Cj of discrete 90° rotations is isomorphic to the group of integers
modulo 4, (Z4,+ (mod 4)), where we construct the mapping as 0° — 0, 90° — 1, 180° — 2, and 270° — 3.
Rotating 90° twice results in 180°, just as 1 + 1 =2 (mod 4).

Normal Subgroups

A subgroup H of a group G is called a Normal Subgroup (denoted H < G) if it is invariant under
conjugation by any element of G. Formally, H is normal if for every g € G and every h € H:

ghg™' € H.

Intuition: If you take an element h from the subgroup, “translate” it using g, and then “translate it
back” using g—!, you must land back inside the subgroup. If H is normal, the “structure” of H looks the
same from the perspective of any element in G.

Examples: In (Z,+), the subgroup of even numbers 2Z is normal since for any g € Z and h € 2Z, we have
g+h—g=nh,ie., ghg' =h.
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Semi-direct Product

The Semi-direct Product (denoted by the symbol x) is a way of “gluing” two groups together to form a
larger group where one group acts on the other.

Let N and H be groups, and let ¢ : H — Aut(N) be a homomorphism that describes how H acts on
N. Here, Aut(N) is the automorphism group of N, i.e., the set of all group isomorphisms o : N — N with
composition as the group operation. The semi-direct product G = N X, H is the set of pairs (n, h) with the
following multiplication law:

(n1,h1) - (n2,h2) = (n1 - @n, (n2), - ha).

Examples: Special Euclidean Groups SE(2): The Special Euclidean group SFE(2) is the semi-direct prod-
uct of the continuous translation group R? and the rotation group SO(2).

e N (The Normal Subgroup): R? (Translations).
e H (The Acting Subgroup): SO(2) (Rotations Ry).
e The Action: @g(v) = Ryv (The rotation matrix Ry rotates the vector v).

e The Product in SE(2): Suppose you have g; = (u,6) and g3 = (v, ¢), then

g1-92 = (u+ Rov, 0+ ).

Plane Symmetry Groups ps: The p4 group is the semi-direct product of the discrete grid Z? and the four
90° rotations Cy4. Elements: g = ((z,y),r), where ,y € Z and r € {0,1,2,3}.

The “Twist”: When r = 1 (90° rotation), the translation (1,0) (one step right) becomes (0,1) (one step
up). For example, let g1 = ((0,0),1) (a 90° rotation at origin) and g2 = ((1,0),0) (a shift 1 unit right).

9192 = ((0a0>+R90°(1a0)7 1+0) = ((071>71)'
Even though go was a shift to the right, the total operation results in a shift up because the rotation was

applied first.

Group Actions

A Group Action describes how a group G transforms a set X. Formally, a map G x X — X is an action
if:

e Identity: e-z ==
e Composition: g - (h-xz) = (gh) -z

Example: The translation group (Z2,+) acts on the pixel grid X. A group element g = (u,v) acts on a
coordinate (x,y) by addition: (x4 u,y + v).

Left Regular Representations

Let G be a group, X be a set upon which G acts. Let F be a function space, where each element f € F is a
function defined on X. The Left Regular Representation L is a map that assigns to each group element
g € G a linear operator L, : F — F, defined by:

[Lyfl(x) = f(g™ ).

Note that sometimes we simplify [L, f](z) as Ly f(z). But you should understand it as “take the function
f, transform it by g to get a new function L, f, and then evaluate that new function at point x.”
To make sense of the abstract notations, we can think of



EECE 571F Groups 1-4

f (The Signal): The input “state” of the layer, e.g., an image. f(z) is the value observed at position
x.

e ¢ (The Transformation): An element of the symmetry group we wish to respect, e.g., a 90° rotation.

Lyf (The Transformed Signal): The entire function f after it has been moved by g.

g~ ! (The Inverse): Ensures that the value of the transformed function at point x is taken from the
“source” point that would land on z after being moved by g.

Why the Inverse (¢~!)? This is the most common point of confusion. We use the inverse to ensure that
the representation is “covariant” with the group composition. If you want to shift a signal “forward” by g,
you must look at what the signal was “backward” at ¢~ 'z. It satisfies

[LoLnfl(x) = [Lafl(g™'2) = f(h™ g™ @) = [Lgn] f(2).

If we used g instead of g~!, the order of operations would flip (L,L,), making it a “right” representation.

Example: The “Shift” Operator in 1D convolution.
e Domain X: The set of integers Z (pixel indices).
e Function f: The input vector where f(i) is the intensity at pixel 4.

e Group G: The translation group (Z,+).

Action: Let g =2 (a “right shift by 27).
e The Result: [L2f](i) = f(i — 2).

If the original signal had a peak at ¢ = 0 (f(0) = 1), the new signal Lof will have its peak at i = 2,
because [Ls f](2) = f(2 —2) = f(0) = 1. This confirms that L, successfully “shifts” the feature map.

Quotient Spaces

Let G be a group and H be a subgroup of G. The Quotient Space (or set of cosets), denoted G/H (read
“G mod H”), is the set of all left cosets of H in G:

G/H ={gH | g€ G}

where a coset gH is the set {gh | h € H}.
Intuition: The quotient space G/H treats all elements in the same “cluster” (coset) as the same point.
If G is a set of transformations, H represents a “sub-transformation” that we want to consider redundant.

Example: The Circle as a Quotient (G =R, H = Z). Counsider the group of real numbers under addition
(R, +) and its subgroup of integers Z. The quotient space R/Z essentially says: “Two numbers are the same
if they differ by an integer.” For example, 0.2, 1.2, and 2.2 all belong to the same coset 0.2 4+ Z. The result
of this “collapsing” is the Circle (S'). Every number is mapped to its fractional part in [0, 1), where 1 wraps
back to 0.

Homogeneous Spaces

A set X is a homogeneous space of a group G if G acts transitively on X. Transitivity means that for
any two points z1,z2 € X, there exists at least one group element g € G such that:

g-T1 =22

Because of this property, a homogeneous space X can always be identified with a Quotient Space G/H,
where H is the stabilizer subgroup of a chosen origin point xy € X. The stabilizer is defined as:

H={geG|g-zo=20}
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Examples: The 2D FEuclidean Plane R%: The plane is a homogeneous space for the Special Euclidean
Group SE(2) (2D translations and 2D rotations).

e Transitivity: Given any two coordinates on a map, you can move from one to the other by translating
(sliding) and potentially rotating the map.

e Stabilizer (H): If you pick the origin (0, 0), the set of all transformations that leave (0,0) fixed are the
rotations around the origin (SO(2)).

e Relation: Therefore, R? = SE(2)/SO(2).

The 2-Sphere S?: The surface of the Earth (idealized as a sphere) is a homogeneous space for the Special
Orthogonal Group SO(3) (3D rotations).

e Transitivity: You can reach any city on Earth from any other city simply by rotating the globe around
some axis.

e Stabilizer (H): If you pick the North Pole as your point, the rotations that leave the North Pole fixed
are the “spinning” motions around the vertical axis, i.e., SO(2).

e Relation: Therefore, S? = SO(3)/SO(2).

The Discrete Grid Z?: In standard Image Processing, the pixel grid is a homogeneous space for the
translation group (Z2,+).

e Transitivity: Any pixel can be reached from any other pixel by a discrete shift. This is why we can
use the same convolution kernel at every pixel—the “neighborhood” of every pixel is identical.

e Stabilizer (H): If you pick the origin (0,0), the set of all transformations that leave the entire grid
unchanged are rotations by multiples of 90° around the point (0,0), i.e., Cy.

e Relation: Therefore, Z2 = p4/C}.



