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Groups

A Group (G, ·) is a set G equipped with a binary operation · (called product) that satisfyies four axioms:

• Closure: ∀g, h ∈ G, g · h ∈ G.

• Associativity: (g · h) · k = g · (h · k).

• Identity: ∃e ∈ G s.t. g · e = e · g = g.

• Inverse: ∀g ∈ G, ∃g−1 ∈ G s.t. g · g−1 = e.

Examples: The Cyclic Group of Order 4 C4: This group represents the symmetries of a square that can
be reached via discrete rotations with angles {0◦, 90◦, 180◦, 270◦}.

• Group Elements: {0◦, 90◦, 180◦, 270◦}

• Group Operation: The composition of rotations. Because we are dealing with a circle, the result
is calculated modulo 360◦. For example, 90◦ · 180◦ = 270◦, 270◦ · 180◦ = 450◦. Since 450◦ ≡ 90◦

(mod 360), the result is 90◦.

• Identity (e): 0◦. For any angle g ∈ C4: g · 0◦ = 0◦ · g = g.

• Inverse (g−1): The inverse is the operation that “undoes” a rotation, returning the object to its original
orientation. For example, inverse of 0◦: 0◦, inverse of 90◦: 270◦ since 90◦ · 270◦ = 360◦ ≡ 0◦, and
inverse of 180◦: 180◦ since 180◦ · 180◦ = 360◦ ≡ 0◦.

The Translation Group: For a d-dimensional space (usually d = 2 for images), the translation group is
the set of all vectors Rd (continuous) or Zd (discrete) under the operation of vector addition.

• Group Elements: A vector v ∈ Rd (continuous) or v ∈ Zd (discrete) representing a shift. For example,
g = (3,−2) means “shift 3 units right and 2 units down.”

• Group Operation (+): The “product” of two translations g1 and g2 is their vector sum: g1 + g2.

• Identity (e): The zero vector 0 = (0, 0). Shifting by zero changes nothing.

• Inverse (g−1): For a shift v, the inverse is −v. If you shift right by 3, you undo it by shifting left by 3.

Subgroups

Let (G, ·) be a group. A subset H ⊆ G is a subgroup if it satisfies three conditions:

• Identity: The identity element e of G is in H.

• Closure: If h1, h2 ∈ H, then h1 · h2 ∈ H.

• Inverses: If h ∈ H, then h−1 ∈ H.
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Examples: The Trivial Subgroup: For any group G, the set containing only the identity {e} is the smallest
possible subgroup.

Integers in Real Numbers: (Z,+) is a subgroup of (R,+). If you add two integers, you get an integer;
the negative of an integer is an integer; and 0 is an integer.

Group Homomorphism

Let (G, ·) and (H, ∗) be two groups. A function ϕ : G → H is a group homomorphism if, for all a, b ∈ G,
the following identity holds:

ϕ(a · b) = ϕ(a) ∗ ϕ(b).

In other words, the result is the same whether you perform the group operation before or after applying
the map. A homomorphism is a map that respects the group operation. It allows us to relate the structure
of one group to another, even if the groups have different sizes.

Examples: Determinants: Consider the group of invertible n×nmatrices under multiplication, GL(n,R),
and the group of non-zero real numbers under multiplication, (R \ {0},×).

The determinant map det : GL(n,R) → R \ {0} is a homomorphism because:

det(A ·B) = det(A)× det(B).

This homomorphism collapses a complex, high-dimensional space (matrices) into a simpler one (scalars)
while preserving the “logic” of multiplication.

Group Isomorphism

A homomorphism ϕ : G → H is an isomorphism if ϕ is a bijection (it is both injective/one-to-one and
surjective/onto). If such a map exists, we say G and H are isomorphic, denoted as G ∼= H.

An isomorphism implies that G and H are identical in structure; they only differ in the “names” of their
elements.

Examples: Logarithms: The group of positive real numbers under multiplication (R+,×) is isomorphic to
the group of all real numbers under addition (R,+) via ϕ(x) = ln(x), since

ln(a · b) = ln(a) + ln(b).

Rotations and Integers: The group C4 of discrete 90◦ rotations is isomorphic to the group of integers
modulo 4, (Z4,+ (mod 4)), where we construct the mapping as 0◦ → 0, 90◦ → 1, 180◦ → 2, and 270◦ → 3.
Rotating 90◦ twice results in 180◦, just as 1 + 1 = 2 (mod 4).

Normal Subgroups

A subgroup H of a group G is called a Normal Subgroup (denoted H ⊴ G) if it is invariant under
conjugation by any element of G. Formally, H is normal if for every g ∈ G and every h ∈ H:

ghg−1 ∈ H.

Intuition: If you take an element h from the subgroup, “translate” it using g, and then “translate it
back” using g−1, you must land back inside the subgroup. If H is normal, the “structure” of H looks the
same from the perspective of any element in G.

Examples: In (Z,+), the subgroup of even numbers 2Z is normal since for any g ∈ Z and h ∈ 2Z, we have
g + h− g = h, i.e., ghg−1 = h.
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Semi-direct Product

The Semi-direct Product (denoted by the symbol ⋊) is a way of “gluing” two groups together to form a
larger group where one group acts on the other.

Let N and H be groups, and let φ : H → Aut(N) be a homomorphism that describes how H acts on
N . Here, Aut(N) is the automorphism group of N , i.e., the set of all group isomorphisms α : N → N with
composition as the group operation. The semi-direct product G = N ⋊φ H is the set of pairs (n, h) with the
following multiplication law:

(n1, h1) · (n2, h2) = (n1 · φh1(n2), h1 · h2).

Examples: Special Euclidean Groups SE(2): The Special Euclidean group SE(2) is the semi-direct prod-
uct of the continuous translation group R2 and the rotation group SO(2).

• N (The Normal Subgroup): R2 (Translations).

• H (The Acting Subgroup): SO(2) (Rotations Rθ).

• The Action: φθ(v) = Rθv (The rotation matrix Rθ rotates the vector v).

• The Product in SE(2): Suppose you have g1 = (u, θ) and g2 = (v, ϕ), then

g1 · g2 = (u+Rθv, θ + ϕ).

Plane Symmetry Groups p4: The p4 group is the semi-direct product of the discrete grid Z2 and the four
90◦ rotations C4. Elements: g = ((x, y), r), where x, y ∈ Z and r ∈ {0, 1, 2, 3}.

The “Twist”: When r = 1 (90◦ rotation), the translation (1, 0) (one step right) becomes (0, 1) (one step
up). For example, let g1 = ((0, 0), 1) (a 90◦ rotation at origin) and g2 = ((1, 0), 0) (a shift 1 unit right).

g1 · g2 = ((0, 0) +R90◦(1, 0), 1 + 0) = ((0, 1), 1).

Even though g2 was a shift to the right, the total operation results in a shift up because the rotation was
applied first.

Group Actions

A Group Action describes how a group G transforms a set X. Formally, a map G×X → X is an action
if:

• Identity: e · x = x

• Composition: g · (h · x) = (gh) · x

Example: The translation group (Z2,+) acts on the pixel grid X. A group element g = (u, v) acts on a
coordinate (x, y) by addition: (x+ u, y + v).

Left Regular Representations

Let G be a group, X be a set upon which G acts. Let F be a function space, where each element f ∈ F is a
function defined on X. The Left Regular Representation L is a map that assigns to each group element
g ∈ G a linear operator Lg : F → F , defined by:

[Lgf ](x) = f(g−1x).

Note that sometimes we simplify [Lgf ](x) as Lgf(x). But you should understand it as “take the function
f , transform it by g to get a new function Lgf , and then evaluate that new function at point x.”

To make sense of the abstract notations, we can think of
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• f (The Signal): The input “state” of the layer, e.g ., an image. f(x) is the value observed at position
x.

• g (The Transformation): An element of the symmetry group we wish to respect, e.g ., a 90◦ rotation.

• Lgf (The Transformed Signal): The entire function f after it has been moved by g.

• g−1 (The Inverse): Ensures that the value of the transformed function at point x is taken from the
“source” point that would land on x after being moved by g.

Why the Inverse (g−1)? This is the most common point of confusion. We use the inverse to ensure that
the representation is “covariant” with the group composition. If you want to shift a signal “forward” by g,
you must look at what the signal was “backward” at g−1x. It satisfies

[LgLhf ](x) = [Lhf ](g
−1x) = f(h−1g−1x) = [Lgh]f(x).

If we used g instead of g−1, the order of operations would flip (LhLg), making it a “right” representation.

Example: The “Shift” Operator in 1D convolution.

• Domain X: The set of integers Z (pixel indices).

• Function f : The input vector where f(i) is the intensity at pixel i.

• Group G: The translation group (Z,+).

• Action: Let g = 2 (a “right shift by 2”).

• The Result: [L2f ](i) = f(i− 2).

If the original signal had a peak at i = 0 (f(0) = 1), the new signal L2f will have its peak at i = 2,
because [L2f ](2) = f(2− 2) = f(0) = 1. This confirms that Lg successfully “shifts” the feature map.

Quotient Spaces

Let G be a group and H be a subgroup of G. The Quotient Space (or set of cosets), denoted G/H (read
“G mod H”), is the set of all left cosets of H in G:

G/H = {gH | g ∈ G}

where a coset gH is the set {gh | h ∈ H}.
Intuition: The quotient space G/H treats all elements in the same “cluster” (coset) as the same point.

If G is a set of transformations, H represents a “sub-transformation” that we want to consider redundant.

Example: The Circle as a Quotient (G = R, H = Z). Consider the group of real numbers under addition
(R,+) and its subgroup of integers Z. The quotient space R/Z essentially says: “Two numbers are the same
if they differ by an integer.” For example, 0.2, 1.2, and 2.2 all belong to the same coset 0.2 + Z. The result
of this “collapsing” is the Circle (S1). Every number is mapped to its fractional part in [0, 1), where 1 wraps
back to 0.

Homogeneous Spaces

A set X is a homogeneous space of a group G if G acts transitively on X. Transitivity means that for
any two points x1, x2 ∈ X, there exists at least one group element g ∈ G such that:

g · x1 = x2

Because of this property, a homogeneous space X can always be identified with a Quotient Space G/H,
where H is the stabilizer subgroup of a chosen origin point x0 ∈ X. The stabilizer is defined as:

H = {g ∈ G | g · x0 = x0}
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Examples: The 2D Euclidean Plane R2: The plane is a homogeneous space for the Special Euclidean
Group SE(2) (2D translations and 2D rotations).

• Transitivity: Given any two coordinates on a map, you can move from one to the other by translating
(sliding) and potentially rotating the map.

• Stabilizer (H): If you pick the origin (0, 0), the set of all transformations that leave (0, 0) fixed are the
rotations around the origin (SO(2)).

• Relation: Therefore, R2 ∼= SE(2)/SO(2).

The 2-Sphere S2: The surface of the Earth (idealized as a sphere) is a homogeneous space for the Special
Orthogonal Group SO(3) (3D rotations).

• Transitivity: You can reach any city on Earth from any other city simply by rotating the globe around
some axis.

• Stabilizer (H): If you pick the North Pole as your point, the rotations that leave the North Pole fixed
are the “spinning” motions around the vertical axis, i.e., SO(2).

• Relation: Therefore, S2 ∼= SO(3)/SO(2).

The Discrete Grid Z2: In standard Image Processing, the pixel grid is a homogeneous space for the
translation group (Z2,+).

• Transitivity: Any pixel can be reached from any other pixel by a discrete shift. This is why we can
use the same convolution kernel at every pixel—the “neighborhood” of every pixel is identical.

• Stabilizer (H): If you pick the origin (0, 0), the set of all transformations that leave the entire grid
unchanged are rotations by multiples of 90◦ around the point (0, 0), i.e., C4.

• Relation: Therefore, Z2 ∼= p4/C4.


