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3.1 Steerable Kernels and Basis Functions

Definition of Steerability: Let G be a group acting on a domain X (e.g., X = R?) viax — g-x. A
kernel/function k : X — C is said to be steerable with respect to G if all of its transformed copies under
the group action lie in a fixed finite-dimensional subspace.

Formally, using the left reqular representation, we let G act on functions by

[Lok](x) = k(g™" - x). (3.1)

Then k is steerable if there exist basis functions {t1,...,9} C L?(X) such that for every g € G we can
write

LK) = 3 a5(0) 4(x), (32)

where the steering coefficients oj(g) depend only on the group element g (not on x).
Special case (SO(2)): taking X = R? with the usual rotation action recovers [Lg,k](x) = k(R_px) and
coefficients a;(go) = ;(6).

3.2 Example: SO(2) and Circular Harmonics Basis

What is SO(2)? SO(2) is simply the set of all planar rotations. You can think of it as “angles”
0 € [0, 27) with addition modulo 27. Each group element gy € SO(2) corresponds to a rotation matrix

cosf) —sin 9}

sinf  cosf (3.3)

Ry = [
which rotates any point x € R2.

Why polar coordinates are natural When studying rotations, it is convenient to write points in polar
coordinates x = (1, ¢). A rotation by 0 keeps the radius r unchanged and only shifts the angle:

(ry@) = (r,p+6). (3.4)

Equivalently, under the left regular action (as defined above), rotating a kernel corresponds to the angular
shift
[Lge k] (Ta ¢) = k(T, ¢ - 9) (35)

Circular harmonics: the Fourier basis on a circle For any fixed radius r, the function ¢ — k(r, ¢) is
a (square-integrable) function on the circle. So we can expand it in the standard Fourier series basis on S*:
Vm(p) 2 ™ m e Z. (3.6)

These €™ are called circular harmonics. Allowing the coefficient to depend on r gives the general form

k(r,¢) =Y Ru(r)e™?, (3.7)

mEZ

where Ry, (r) are radial profiles.
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The key intuition: rotation becomes a phase shift If we rotate the kernel by 6, each basis function
simply picks up a complex phase:

[L991/Jm](rv ¢) = ¢m(rv ¢ — 0) = ¢ imf 1/Jm(r7 ¢) (3'8)

So in this basis, “rotate the filter” is the same as “multiply each frequency-m component by e~""%” . These
phases e~ are exactly the steering weights.
In the next subsection we derive this basis more systematically from the eigenfunction viewpoint.

3.2.1 Derivation: The Harmonic Basis

We now derive the circular-harmonic basis from the steerability requirement. The key idea is to choose a
basis in which the group action (rotation) becomes as simple as possible on the coefficients.

Setup (recall) For SO(2) acting on R2, the left regular action is
1L, K](x) = k(R_g), (3.9)

or equivalently in polar coordinates,
[L.qs k] (Ta (b) = k’(’l", ¢ - 9) (310)

Thus for each fixed radius r, the slice k(r, -) is a function on the circle S*.
Because the complex exponentials {€"™?},,c7 form a complete orthogonal basis! for L2(S!), any
square-integrable kernel can be expanded as a Fourier series along the angular axis:

k(r,¢) = Z R (r)e™?, (3.11)

meZ

where coefficients R,,(r) are radial functions.

Using L, to derive the Basis A kernel is steerable if the action of Ly, preserves the structure of the
basis functions. The most efficient way to achieve this is to choose basis functions v that are eigenfunctions
of the operator Ly, .

Let’s apply Ly, to a single term t,, (7, ¢) = Ry, (r)e™™?:

[Lgo¥m](r, @) = m(r, 0 — 0) (Definition of L) (3.12)
— Ry (r)eim(@=0) (3.13)
= Ry (r)ePe=m? (3.14)
= e "M%, (1, ¢) (Eigenvalue Property) (3.15)

This result shows why we use representations:
e The operator L, has been reduced to multiplication by a scalar p(6) = e—imo

—im0

e This scalar e is exactly the representation of SO(2) for frequency m.

The Benefits of the Basis By expanding the kernel in this specific basis, the operation “Rotate the
Filter” (L,,k) becomes “Phase Shift the Coefficients” (e "™?R,,).

Ly, (K(r, ¢)) = Ly, (Z Rm(r)eim¢> =D (e Ry (r))e™? (3.16)

m

This allows the network to compute the response to any rotated version of the filter analytically, simply by
multiplying the output features by e="™9.

1See appendix for more explanation on this point.



EECE 571F Steerable Group Convolutions 3-3

Appendix I: Circular Harmonics on S!' (Derivation, Orthogonality,
Completeness)

This appendix gives a self-contained justification for using the basis functions {e??},,cz (“circular harmon-
ics”) as the Fourier basis on the circle S*.
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A.1 Derivation: eigenfunctions of angular shifts

Step 0: Define the shift operator Ty On the circle S (parameterized by an angle ¢ € [0,27)), rotating
the input angle by 6 corresponds to shifting the argument of the function. We denote this shift operator by
Tg:

[Tof1(¢) = f(¢— ). (3.17)
Step 1: Ty preserves the L? inner product (unitarity) Recall the L?(S!) inner product
1 27
(F.0) 2o [ 506 do. (318)
T Jo

Then Ty preserves inner products (hence norms) by a change of variables:

2
T Tog) = 5= [ $6—0)g@ =0 o (3.19)
u=g—* 2i ’ f(w) g(u) du (3.20)
T Jo
=(f.9)- (3.21)

Therefore Ty is unitary on L?(S1).

Step 2: Eigenfunction assumption (“pure frequencies”) In the ordinary Fourier transform, complex
exponentials are special because translating the signal only multiplies the coefficient by a phase. Here, we
want the analogous property for angular shifts, so we assume f has the eigenfunction property: shifting by
0 only rescales f. That is, we look for f such that:

f(@=0)=A0)f(d) V0. (3.22)
Step 3: Multiplicativity of the eigenvalue A The shift operators compose according to angle addition:
To,To, = To,+0,- (3.23)

Apply both sides to an eigenfunction f. Using (3.22),
(To1+0, /(&) = [To, (To, )(@) = T, (M(02))(9) = A(02)[Th, f1(¢) = A(02)A(01)f (). (3.24)

But also [T, 14, f](¢) = A(61 + 62) (), so
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Step 4: Unit-modulus eigenvalues Because Ty is unitary, it preserves || f||2. If f satisfies (3.22), then
[fll2= 175 fll2= IA0) fll2= [AO)] [ £l2, (3.26)
so (for nonzero f) we must have |A(8)|= 1. The (measurable/continuous) solutions are complex phases

AB) = e ™ for some u € R. (3.27)

Step 5: Solve for the eigenfunctions and quantize the frequency Plugging back into (3.22) and
setting 6 = ¢ gives A ‘

FO)=e""2f(9) = [f(¢)=[(0)e"?. (3.28)
Finally, functions on the circle are 2m-periodic, so

flp+2n)=f(¢p) =M™ =1=peZ (3.29)

Therefore the eigenfunctions are exactly

P () = €™, m e Z. (3.30)

A.2 Orthogonality in L?(S')
Use the standard inner product on L?(S'):

1 27
(f.9) = o f(9) g(¢) do. (3.31)
™ Jo
Then for integers m, n,
. . 1 27 ) 1 _
(e, emm?) = g/o g = {0’ " # . (3.32)

So {e'™?} is an orthonormal set.

A.3 Completeness in L?(S') (Fourier series theorem)

Completeness means: if f € L2(S!) is orthogonal to every e!™?, then f = 0 (in L?). Equivalently, the linear
span of {¢"™?} (trigonometric polynomials) is dense in L?(S?).
For any f € L?(S'), define its Fourier coefficients

. , 1 [ ,
fm) & (f,e™?) = —— [ f(g)e” "™ d. (3.33)
Q'IT 0
The Fourier series partial sums
N
Snf(@) & > fm)e™? (3.34)
m=—N
converge to f in L? as N — oo, and we have Parseval’s identity
1 1Z2s1y= D If(m)]%. (3.35)
meZ

In particular, if f(m) = 0 for all m € Z, then ||f||%2(sl): 0, hence f = 0. This proves {€™%},,cz is a
complete orthonormal basis of L?(S1).

Connection to group representations For S! (equivalently SO(2)), all irreducible representations are
1D and given by the characters p,,(6) = e~ The basis functions e™? are exactly the corresponding
Fourier basis functions on the circle.



