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3.1 Steerable Kernels and Basis Functions

Definition of Steerability: Let G be a group acting on a domain X (e.g., X = R2) via x 7→ g · x. A
kernel/function k : X → C is said to be steerable with respect to G if all of its transformed copies under
the group action lie in a fixed finite-dimensional subspace.

Formally, using the left regular representation, we let G act on functions by

[Lgk](x) ≜ k(g−1 · x). (3.1)

Then k is steerable if there exist basis functions {ψ1, . . . , ψM} ⊂ L2(X) such that for every g ∈ G we can
write

[Lgk](x) =

M∑
j=1

αj(g)ψj(x), (3.2)

where the steering coefficients αj(g) depend only on the group element g (not on x).
Special case (SO(2)): taking X = R2 with the usual rotation action recovers [Lgθk](x) = k(R−θx) and

coefficients αj(gθ) = αj(θ).

3.2 Example: SO(2) and Circular Harmonics Basis

What is SO(2)? SO(2) is simply the set of all planar rotations. You can think of it as “angles”
θ ∈ [0, 2π) with addition modulo 2π. Each group element gθ ∈ SO(2) corresponds to a rotation matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, (3.3)

which rotates any point x ∈ R2.

Why polar coordinates are natural When studying rotations, it is convenient to write points in polar
coordinates x = (r, ϕ). A rotation by θ keeps the radius r unchanged and only shifts the angle:

(r, ϕ) 7→ (r, ϕ+ θ). (3.4)

Equivalently, under the left regular action (as defined above), rotating a kernel corresponds to the angular
shift

[Lgθk](r, ϕ) = k(r, ϕ− θ). (3.5)

Circular harmonics: the Fourier basis on a circle For any fixed radius r, the function ϕ 7→ k(r, ϕ) is
a (square-integrable) function on the circle. So we can expand it in the standard Fourier series basis on S1:

ψm(ϕ) ≜ eimϕ, m ∈ Z. (3.6)

These eimϕ are called circular harmonics. Allowing the coefficient to depend on r gives the general form

k(r, ϕ) =
∑
m∈Z

Rm(r) eimϕ, (3.7)

where Rm(r) are radial profiles.
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The key intuition: rotation becomes a phase shift If we rotate the kernel by θ, each basis function
simply picks up a complex phase:

[Lgθψm](r, ϕ) = ψm(r, ϕ− θ) = e−imθ ψm(r, ϕ). (3.8)

So in this basis, “rotate the filter” is the same as “multiply each frequency-m component by e−imθ”. These
phases e−imθ are exactly the steering weights.

In the next subsection we derive this basis more systematically from the eigenfunction viewpoint.

3.2.1 Derivation: The Harmonic Basis

We now derive the circular-harmonic basis from the steerability requirement. The key idea is to choose a
basis in which the group action (rotation) becomes as simple as possible on the coefficients.

Setup (recall) For SO(2) acting on R2, the left regular action is

[Lgθk](x) = k(R−θx), (3.9)

or equivalently in polar coordinates,
[Lgθk](r, ϕ) = k(r, ϕ− θ). (3.10)

Thus for each fixed radius r, the slice k(r, ·) is a function on the circle S1.
Because the complex exponentials {eimϕ}m∈Z form a complete orthogonal basis1 for L2(S1), any

square-integrable kernel can be expanded as a Fourier series along the angular axis:

k(r, ϕ) =
∑
m∈Z

Rm(r)eimϕ, (3.11)

where coefficients Rm(r) are radial functions.

Using Lg to derive the Basis A kernel is steerable if the action of Lgθ preserves the structure of the
basis functions. The most efficient way to achieve this is to choose basis functions ψ that are eigenfunctions
of the operator Lgθ .

Let’s apply Lgθ to a single term ψm(r, ϕ) = Rm(r)eimϕ:

[Lgθψm](r, ϕ) = ψm(r, ϕ− θ) (Definition of Lg) (3.12)

= Rm(r)eim(ϕ−θ) (3.13)

= Rm(r)eimϕe−imθ (3.14)

= e−imθψm(r, ϕ) (Eigenvalue Property) (3.15)

This result shows why we use representations:

• The operator Lgθ has been reduced to multiplication by a scalar ρ(θ) = e−imθ.

• This scalar e−imθ is exactly the representation of SO(2) for frequency m.

The Benefits of the Basis By expanding the kernel in this specific basis, the operation “Rotate the
Filter” (Lgθk) becomes “Phase Shift the Coefficients” (e−imθRm).

Lgθ (k(r, ϕ)) = Lgθ

(∑
m

Rm(r)eimϕ

)
=
∑
m

(e−imθRm(r))eimϕ (3.16)

This allows the network to compute the response to any rotated version of the filter analytically, simply by
multiplying the output features by e−imθ.

1See appendix for more explanation on this point.
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Appendix I: Circular Harmonics on S1 (Derivation, Orthogonality,
Completeness)

This appendix gives a self-contained justification for using the basis functions {eimϕ}m∈Z (“circular harmon-
ics”) as the Fourier basis on the circle S1.
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A.1 Derivation: eigenfunctions of angular shifts

Step 0: Define the shift operator Tθ On the circle S1 (parameterized by an angle ϕ ∈ [0, 2π)), rotating
the input angle by θ corresponds to shifting the argument of the function. We denote this shift operator by
Tθ:

[Tθf ](ϕ) ≜ f(ϕ− θ). (3.17)

Step 1: Tθ preserves the L2 inner product (unitarity) Recall the L2(S1) inner product

⟨f, g⟩ ≜ 1

2π

∫ 2π

0

f(ϕ) g(ϕ) dϕ. (3.18)

Then Tθ preserves inner products (hence norms) by a change of variables:

⟨Tθf, Tθg⟩ =
1

2π

∫ 2π

0

f(ϕ− θ) g(ϕ− θ) dϕ (3.19)

u=ϕ−θ
=

1

2π

∫ 2π

0

f(u) g(u) du (3.20)

= ⟨f, g⟩. (3.21)

Therefore Tθ is unitary on L2(S1).

Step 2: Eigenfunction assumption (“pure frequencies”) In the ordinary Fourier transform, complex
exponentials are special because translating the signal only multiplies the coefficient by a phase. Here, we
want the analogous property for angular shifts, so we assume f has the eigenfunction property: shifting by
θ only rescales f . That is, we look for f such that:

f(ϕ− θ) = λ(θ)f(ϕ) ∀ϕ, θ. (3.22)

Step 3: Multiplicativity of the eigenvalue λ The shift operators compose according to angle addition:

Tθ1Tθ2 = Tθ1+θ2 . (3.23)

Apply both sides to an eigenfunction f . Using (3.22),

[Tθ1+θ2f ](ϕ) = [Tθ1(Tθ2f)](ϕ) = Tθ1(λ(θ2)f)(ϕ) = λ(θ2)[Tθ1f ](ϕ) = λ(θ2)λ(θ1)f(ϕ). (3.24)

But also [Tθ1+θ2f ](ϕ) = λ(θ1 + θ2)f(ϕ), so

λ(θ1 + θ2) = λ(θ1)λ(θ2). (3.25)
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Step 4: Unit-modulus eigenvalues Because Tθ is unitary, it preserves ∥f∥2. If f satisfies (3.22), then

∥f∥2= ∥Tθf∥2= ∥λ(θ)f∥2= |λ(θ)| ∥f∥2, (3.26)

so (for nonzero f) we must have |λ(θ)|= 1. The (measurable/continuous) solutions are complex phases

λ(θ) = e−iµθ for some µ ∈ R. (3.27)

Step 5: Solve for the eigenfunctions and quantize the frequency Plugging back into (3.22) and
setting θ = ϕ gives

f(0) = e−iµϕf(ϕ) ⇒ f(ϕ) = f(0)eiµϕ. (3.28)

Finally, functions on the circle are 2π-periodic, so

f(ϕ+ 2π) = f(ϕ) ⇒ eiµ2π = 1 ⇒ µ ∈ Z. (3.29)

Therefore the eigenfunctions are exactly

ψm(ϕ) = eimϕ, m ∈ Z. (3.30)

A.2 Orthogonality in L2(S1)

Use the standard inner product on L2(S1):

⟨f, g⟩ ≜ 1

2π

∫ 2π

0

f(ϕ) g(ϕ) dϕ. (3.31)

Then for integers m,n,

⟨eimϕ, einϕ⟩ = 1

2π

∫ 2π

0

ei(m−n)ϕdϕ =

{
1, m = n,

0, m ̸= n.
(3.32)

So {eimϕ} is an orthonormal set.

A.3 Completeness in L2(S1) (Fourier series theorem)

Completeness means: if f ∈ L2(S1) is orthogonal to every eimϕ, then f = 0 (in L2). Equivalently, the linear
span of {eimϕ} (trigonometric polynomials) is dense in L2(S1).

For any f ∈ L2(S1), define its Fourier coefficients

f̂(m) ≜ ⟨f, eimϕ⟩ = 1

2π

∫ 2π

0

f(ϕ)e−imϕdϕ. (3.33)

The Fourier series partial sums

SNf(ϕ) ≜
N∑

m=−N

f̂(m)eimϕ (3.34)

converge to f in L2 as N → ∞, and we have Parseval’s identity

∥f∥2L2(S1)=
∑
m∈Z

|f̂(m)|2. (3.35)

In particular, if f̂(m) = 0 for all m ∈ Z, then ∥f∥2L2(S1)= 0, hence f = 0. This proves {eimϕ}m∈Z is a

complete orthonormal basis of L2(S1).

Connection to group representations For S1 (equivalently SO(2)), all irreducible representations are
1D and given by the characters ρm(θ) = e−imθ. The basis functions eimϕ are exactly the corresponding
Fourier basis functions on the circle.


