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4.1 Feature Types (Representations)

In steerable CNNs, each feature vector at a spatial location lives in a fiber space V and comes with a type,
specified by a group representation
p:G— GL(V). (4.1)

Intuitively, the type tells us how the feature channels should transform when we apply a symmetry g € G.

Field interpretation You can interpret a feature map as a field over space:
o If V =R (scalar type), then f(x) € R and the feature map is a scalar field.
o If V =R (vector type), then f(x) € R? and the feature map is a vector field.
More generally, dim(V') equals the number of channels per field element (per “type instance”), and a layer
typically contains multiple copies of various types.
4.1.1 Concrete Examples

e Scalar type (invariant): V = R and p(g) = 1. A scalar (e.g., intensity) does not rotate; only its
spatial position changes.

e Vector type: V = R? and p(g) = R(g), the standard rotation matrix. A 2D/3D vector (e.g., gradient
or velocity) rotates with the coordinate frame.

e SO(3) irreps (spherical-harmonic types): for [ = 0,1,2, ..., take V = C2+! and
p(g) _ Dl(g) c C(2l+1)><(2l+1). (4.2)

A feature of type-I has 21 + 1 channels that mix under rotation according to D'(g).

4.1.2 Irreducible Representations (Irreps)

A representation p : G — GL(V) is called reducible if there exists a nontrivial subspace W C V such that
p(g)W C W for all g € G. If no such proper invariant subspace exists, the representation is irreducible (an
irrep).

Why irreps matter for steerable networks Irreps are the “atomic” building blocks of representations:
for many groups of interest (e.g., finite groups and compact Lie groups such as SO(3)), any finite-dimensional
representation can be decomposed into a direct sum of irreps,

V=@PmV, (4.3)

where each V; carries an irrep and m; € N is its multiplicity. In steerable CNNs, choosing feature types as
(copies of) irreps makes the transformation law clean and structured: under a symmetry, channels only miz
within each irrep block.
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SO(3) example (angular momentum) For SO(3), the irreps are indexed by a degree [ € {0,1,2,...}.
The corresponding (complex) irrep D! has dimension 2/ + 1 and acts on the coefficient vector of spherical
harmonics of degree [. This is why a type-l field naturally has 2/ + 1 channels.

Induced action on a field (recall) If f: R? — V is a feature field, we write m(g) for the induced
action (also called the induced representation) of the group element g on the space of fields. That is, 7(g)
is an operator that takes a field f and returns the transformed field 7(g)f. With the type/representation p
on the fiber, this action is

[7(9)f1(x) = plg) f(g~"%). (4.4)

Steerable convolutions are designed so that their output transforms according to this rule.

4.2 Steerable Group Convolutions

A steerable convolution maps an input field f;, (of type/representation pi,) to an output field fou4 (of type
pout). For simplicity, we write the spatial convolution on R? as

fout (X) = K(X - Y) fin(y) dy (45)

R?
Here the kernel is matrix-valued: K : R? — Hom(Viy, Vout)-

4.2.1 Kernel Constraint (Equivariance)

We now derive the kernel constraint from the equivariance requirement, using the standard group convo-
lution form (with =1 acting on the argument).

Step 1: Group convolution form Let a field f : X — Vi, live on a space X on which G acts (e.g.,
X = R? with rotations). A common way to write a G-equivariant correlation/convolution is

K+ f](x) = /G K(h~" - x) f(h)dh, (4.6)

where dh is the Haar measure on G. (Here, the key structural point is the appearance of h~! inside K(-),
exactly as in the usual group convolution k(h~1g) on G.)

Step 2: State equivariance Let m;, and 7o, be the induced actions on input and output fields:
[7(9)f](x) = p(g)f(g~1x). Equivariance requires

Tout(9) (K * fin) = K * (min(9) fin) Vg € G- (4.7)
Step 3: Expand both sides and match terms Expanding the left-hand side gives
[Tout (9)(K * fin)](%) = pout(9) (K * fin) (97" - x)
— pout(g / K(h™" - (g7 ) fin(h) dh. (4.8)

For the right-hand side,

K (min(g) fu)]( / K=" %) () fin(g~'h) dh. (4.9)

Make the change of variables h = gh’ (so g 'h = h/ and dh = dh’ by left-invariance of Haar measure),
yielding

K * (min(9) fi)( / K((gh')™" - %) pin(g) fin(') dI. (4.10)

Since (gh')~! = h'~tg~!, both sides depend on fi,(h’). Requiring Eq. (4.7) to hold for all inputs implies the
kernel must satisfy

K(g-%) = pous(9) K (%) pin(9) ™" (4.11)
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4.2.2 Practical Parameterization via a Steerable Basis

Instead of learning K freely pixel-by-pixel, we solve the equivariance constraint K (g-x) = pout(g) K (x)pin(g) ~*

to obtain its solution space. We choose a basis of this solution space, {¥1, ..., ¥ g}, so that any kernel written
as a linear combination of Wy is automatically equivariant. We then parameterize

B
K(x) = Z wp Up(x), (4.12)
b=1
and learn only the coefficients {wy}.

4.3 Example: SO(3) and Spherical Harmonics

This section ties together the key ingredients above (types, induced actions, equivariance constraints, and
steerable bases) in the concrete case of 3D rotations.

4.3.1 The Group Action

The group SO(3) is the set of all 3D rotations. It acts on points on the unit sphere S? by rotating their 3D
coordinates. We write this action as x — g - x.

4.3.2 Signals and Feature Types on the Sphere

A scalar signal on the sphere is a function f : S — R. More generally, a feature field on the sphere is a
function f : S? — V where V is the fiber space. Choosing a type p : SO(3) — GL(V) specifies how f should
transform under rotations via the induced action

[7(9)f1(x) = plg) flg™" - ). (4.13)
4.3.3 Spherical Harmonics as a Canonical Basis

Spherical harmonics {Y;} form an orthonormal basis for scalar functions on S2. They are indexed by

1€{0,1,2,...}, me{-l... I} (4.14)

Rotation acts blockwise A central fact is that under rotation, spherical harmonics of different degree [
do not mix. For any g € SO(3),

l
Y (g x)= Y Dhr(9) Y™ (), (4.15)
m'=—I

where D!(g) € CEHD*2H1) g the [-th irreducible representation (Wigner-D matrix).

A concrete type choice This immediately gives a family of natural feature types for SO(3): for each [,
choose V' = C%*! and define

p(g) = D'(g). (4.16)
A feature of type-I thus has 2/ + 1 channels that mix under rotation according to D'(g).

4.3.4 From the Equivariance Constraint to a Steerable Basis (The SO(3) Case)

To make the “steerable basis” completely concrete, we now specialize to the common setting where both the
input and output types are SO(3) irreps.
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Setup: irrep-to-irrep kernels Let the input be a type-li, field and the output be a type-loy field, so

pin(9) = D" (g),  pout(g) = D' (g). (4.17)
Then the kernel is a matrix-valued function
K- 52 N HOII,I((CQl;n—i-l7 (C2l0ut+1) o~ C(2l0\1t+1)><(2l;n+1) (418)

that must satisfy the equivariance constraint

K(g-x) = D' (g) K(x) D' (g)~". (4.19)

Key representation-theoretic fact: tensor-product decomposition FEq. (4.19) says that (as a func-
tion of x) the kernel must transform in the same way as the representation D't @ (D'n)*. For SO(3), tensor

products decompose into irreps:
lout+lin

Dlout ® (Dlin)* [ @ DJ. (420)
J:‘lout_lin‘
This tells us that the angular dependence of an equivariant kernel can be expanded in spherical harmonics
of degrees J in that range.

Concrete basis functions via Clebsch—Gordan coupling Clebsch-Gordan (CG) coefficients are the
change-of-basis coefficients that decompose a tensor product of two irreducible representations into a direct
sum of irreducibles. Concretely, given two SO(3) irreps of degrees {1 and l2, the tensor product space has
a natural “product” basis {|l1m1) ® |lamse)}. CG coefficients Cﬂ%hhmz define the corresponding “coupled”
basis vectors |JM) via

l1 lQ
|JM> = Z Z Cl{%1’12m2 |l1m1> [ ‘lzm2>. (421)
m1:7[1 ’I’?’Lz:flg
They satisfy the selection rule M = mj + mq, and J ranges over |l; — la],...,l1 + 2. In our setting, the CG

coefficients serve as the unique (up to convention) intertwining weights that “couple” the spherical-harmonic
angular dependence (Y*) with the channel indices (Min, Moyy) so that the resulting matrix-valued basis
functions ¥’ (x) transform according to Eq. (4.19).

Let C’ll;“;n’::“jm denote Clebsch-Gordan (CG) coefficients. A standard equivariant basis on the sphere is:

J
lout Mout m
(07 () e = D Ol Y5 (%), (4.22)
m=—J
for each J € {|lout —linl; - - - » lout +lin - One can verify (using the transformation rules of Y7* and the defining

property of CG coefficients) that these satisfy Eq. (4.19).

Steerable parameterization (explicit for SO(3)) With the basis (4.22), any equivariant kernel of this

type can be parameterized as
lout +lin

Kx)= >  w ¥ (x), (4.23)

J=[lout —lin|

where w are learnable (complex) coefficients (or real coefficients with an appropriate real basis). In practice,
one often also includes a learnable radial profile if the kernel lives on R? rather than S2.

4.3.5 (Optional) Where Y Comes From

Spherical harmonics can be derived as eigenfunctions of the Laplacian on the sphere by solving the eigenvalue
problem
Ag:Y(6,0) = ~AY(6,0), (4.24)

where (0, ¢) are the standard spherical angles (colatitude and longitude).
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Step 1: Write the spherical Laplacian On the unit sphere, the spherical Laplacian is

1 0 oY 1 0%y
AgY = — — [ sinf— —. 4.25
521 T Gin6 o9 <Sm ae> T inZ0 962 (4.25)
Step 2: Separation of variables Assume a separable form
Y(8,6) = 0(0) B(6). (4.26)
Plugging into Ag2Y = —AY and dividing by ©® gives
1 d do 1 d?®
——— — [ sinf — — =\ 4.27
Osind db (Sm de) B sin? 0 dg? (4.27)
Multiply both sides by sin? @ to separate the 6 and ¢ dependence:
.. 1d (. dO 1 d*® 9
sin 0 o@ (sm@ d@) + @ do? = —Asin® 6. (4.28)
The left-hand side is a sum of a function of § and a function of ¢, so each term must equal a constant. Let
1 d*® 9
——— = —m-. 4.2

Step 3: Solve the azimuthal equation The ¢-equation becomes

2o,
with solutions ®(¢) = e!™?. Single-valuedness under ¢ +— ¢ + 27 implies m € Z.

Step 4: Obtain the polar (associated Legendre) equation With the separation constant m?, the
f-equation becomes

1 d do m?
% (s ) - _9=-nre. 4.31
sin 0 df (Sm de) 26 O © (4:31)
Let = cos and define u(z) = ©(f(z)). Using 4 = —sin6 L, one obtains the associated Legendre

differential equation
2

= a:2> u(z) = 0. (4.32)

Regularity of solutions at the poles x = 41 forces the eigenvalues to take the discrete form

(1 —2%)u"(x) — 22/ () + (/\ —

A=11+1), 1€{0,1,2,...}, |m|<L (4.33)

The corresponding regular solutions are (up to normalization) the associated Legendre functions P/™(x).

Step 5: Assemble Y;" and normalize Putting the pieces together yields
Y™ (6, ¢) = Ny P/ (cos 0) e™?, (4.34)
where Ny, is chosen so that {¥;™} are orthonormal on S?:
2m ™
/ / Y;™(0,0) Y (0, 0) sin6dd dp = 61 Sy - (4.35)
o Jo

A common convention is

Ny = " (4.36)



