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Real World Motivation: Why Point Clouds/Point Sets?

LiDAR Sensors

Depth Cameras

It is important to effectively process point cloud data!

Image Credit: https://www.cs.utexas.edu/~yukez/cs391r_fall2023/slides/pre_08-31_Lance.pdf
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Challenges for Deep Learning on Point Sets

Deep Learning for point sets need to address unique
characteristics of the point set/cloud data:

1. Density variability.

2. Irregular data structure (no fixed grid).
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Challenges for Deep Learning on Point Sets

Deep Learning for point sets need to address unique
characteristics of the point set/cloud data:

1. Density variability.
2. lrregular data structure (no fixed grid).
3. Importance of both local and global contexts in point

set data.

glass

Image Credit: https://www.cs.utexas.edu/~yukez/cs391r_fall2023/slides/pre_08-31_Lance.pdf
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Problem Statement

X = (M, D)

M C RR?: a set of points in d-dimensional space

D: Euclidean distance metric

Objective: Learning set functions f'that takes the metric space y as input and
produce information of semantic interest (for classification & segmentation)



Problem Statement
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Point Cloud (Set) f(X)

1. (X, Y, z) coordinates
2. Color channels (r,g,b)
3. ... Semantic Segmentation
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https://github.com/charlesq34/pointnet

PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation

Classification Network
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How does PointNet satisfy the properties of Point Sets?

We want a bijection map between high-dim space and 1d real line for sorting

Property 1: Unordered

Point set representations should be
invariant to input ordering.

This can be done in three ways:
1. Sort to a canonical order
2. Use an RNN and augment training with
random orders

3. Use a symmetric function

Image Credit: Generated with NanoBananaPro
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High-Dimensional 1D Real Line
Space (R™) (Canonical Order)

However, this spatial proximity is not
guaranteed as dimension is reduced!
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How does PointNet satisfy the properties of Point Sets?

Property 1: Unordered

Point set representations should be
invariant to input ordering.

This can be done in three ways: “RNN has good robustness
1. Sort to a canonical order to input ordering for
[2. Use an RNN and augment training With] sequences with small length

but does not scale”

random orders
-- OrderMatters

3. Use a symmetric function
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How does PointNet satisfy the properties of Point Sets?

Property 1: Unordered

Point set representations should be
invariant to input ordering.

This can be done in three ways: f({@, . 2n}) ~ g(h(21), - h(2n))

1. Sort to a canonical order Fio® LR
2. Use an RNN and augment training with ). h: RN - RK
random orders 3.9:REx ... x RE 5 R (Symmetric Function)

~
m

3. Use a symmetric function




PointNet is invariant to input ordering due to Max Pooling

F({z15-: 5 20}) & glh(z1); .o h(2)) f(x1,20,.ccyy) =7 ( MAX {h(xz)}>

1=1,...,n
1. f: 2R SR
. h:RN - RK MLPs

g:R¥x.--xRX - R Max Pooling + Global Signature

n

MLPs with shared weights: h(x_1), h(x_2),...h(x_n)  Max Pooling gives order invariance

Classification Network
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Does PointNet satisfy the properties of Point Sets?

Property 2: Invariance under transformations

1. Changing pose should not change object
identity

2. Representations should be invariant to
rigid pose transformations (translation and
rotations)

Image Credit: Generated with NanoBananaPro

13



Does PointNet satisfy the properties of Point Sets?

Property 2: Invariance under transformations

How can we do this?
Align all input sets to a canonical space
before extracting features

Image Credit: Generated with NanoBananaPro

The T-Net: Learned Alignment
(Matrix Multiplication)

s &
N o Point | | Transformation| _ [ A1ened
ix Clouds Matrix (8) | = [ SO

Before: Chairs in Random Orientations

After: Chairs in Canonical Pose

Visual Idea: The T-Net learns to align data (like point clouds of chairs),
canonical space to improve classification.
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PointNet is Invariant under transformation

Align all input sets to a canonical space
before exiracting features

_input points

T (Transform)-Net takes raw coordinates
and predicts an affine 3x3 transformation
matrix

Just like a “Mini-PointNet”

1. Shared MLPs

2. Max Pooling

3. Fully connected Layers

input
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PointNet is Invariant under transformation

A second T-Net after the first few layers
aligns point features

Second T-Net (64x64) has 4,096
parameters! Add constraints via
regularization to prevent network from
learning “illegal” transforms:

Lyeg = |1 — AAT|%

_input points -
nx3
x3

Classification Networ
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Does PointNet satisfy the properties of Point Sets?
Property 3: Interaction between Points

1. Points are in a metric space

2. There are meaningful local neighbourhood of
points

3. Many local prediction tasks such as segmentation
require summarizing information in a local
neighborhood

How to get local features that take global context
into account?
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Does PointNet properly capture interaction between
Points?

How to get local features that take global context
into account?

e Ground Truth PointNet
i ‘ input mlp (64,64) feature mip (64,128,1024) max mlp
g transform :;5: . transform . :@: pool 1004 (512,256,k)
;' 7 —%|  shared E ] — E shared nx1024 ‘ﬁ‘@
£ — ‘ g’_, = ko
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: " point features o
:?; &
&= E 2
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BV BN W ‘§'
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L O ;
Concatenating global-to-local This prevents the network
features combines local + global from capturing local context
info

at different scales
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Does PointNet properly capture interaction between
Points?

Ground Truth PointNet

gk

Not quite. While PointNet captures a global
signature, it lacks local structure induced by the
metric space

In addition, PointNet does not take into account
density variability, which might come from
perspective effects in 3D scanning
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Method: PointNet++

skip link concatenation

Hierarchical point set feature learning

Output

Input

— > —> -
interpolate UMt interpolate Uit
_____ . . pointnet pointnet
Classification
S —> —_— % (1,C4) .
sampling &  pointnet ~ sampling & pointnet g
grouping grouping -5 2
8 VAN J 8
Y Y o
set abstraction set abstraction .
pointnet fully connected layers

Overview of PointNet++

Image Credit: https://arxiv.ora/pdf/1706.02413
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Method: PointNet++

sampling &

pointnet
grouping

BV
set abstraction

Image Credit: https://arxiv.ora/pdf/1706.02413

A set abstraction consists of three layers.
1.  Sampling layer

2. Grouping layer

3. PointNet layer

Overview of PointNet++

21
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Method: PointNet++

ature learning

sampling &
grouping

\

Then, set abstraction is applied
recursively to obtain the output.

Output

Y

set abstraction

Image Credit: https://arxiv.ora/pdf/1706.02413

Overview of PointNet++
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Method: PointNet++

Apply different aggregation methods given the output for segmentation and classification.

Image Credit: https://arxiv.ora/pdf/1706.02413
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Overview of PointNet++
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Set abstraction: Sampling Layer

Given point set P = {z1,...,zn}run farthest point

sampling (FPS) to obtain a subset of the point set,
B = {:131'1, e ,a:iN,}

1. Initialization: Select a random initial point from the
point set P and add it to the sampled set S.
Determine set size N'.

2. Distance Calculation: For all remaining points in
P, calculate their distance to the nearest point in
the currently sampled set S.

3. Selection: Add the point with the maximum
calculated minimum distance to S.

4. Repeat Step 2 and 3 until obtain N’ points in S.

Image Credit: https://arxiv.ora/pdf/1706.02413
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pointnet ~ sampling&  pointnet
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Set abstraction: Grouping layer

Treat the sampled S from the last step as a set of N’
centroids.

Construct a group set G that is the N’ local regions

|
|
|
|
! 1
from the point set P. Each region consists of K ! :
neighboring points, where each point has a ! 'y B
dimension of d + C representing spatial coordinates | , e . _
. I sampling & pointnet I sampling & pointnet
and feature attributes. | ), e )
1 Y 1 Y
The K neighboring points are selected via kNN or ball - - Sgastrction _ J set abstraction

query of the centroids in S, resulting in G’s shape
being (N, K, d+C).

25
Image Credit: https://arxiv.ora/pdf/1706.02413
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Set abstraction: PointNet Layer

The abstraction layer processes the grouped point e
set G with shape (V' K, d+C) to produce an
aggregated representation for each local region
with shape (N', d+C’). This is the set abstraction F
for P.

. : : : ,
- A PointNet architecture is applied to each of the N i) o s &: .
local regions, aggregating the K points into a single, . gm“*’mg: N St .
compact feature vector. T L
] o set absfraction set abftractlon
- Feature Transformation. The layer maps the original ~  ~====7=7°=7
feature dimension C to a new, abstracted feature
dimension C'. The spatial dimension d is also
passed to the next layer.

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

skip link concatenation

pointnet fully connected layers

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

Classification

Image Credit: https://arxiv.ora/pdf/1706.02413

class scores
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Feature propagation for segmentation & classification

skip link concatenation

...........................................

unit interpolate

interpolate . :
pointnet pointnet

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

skip link concatenation

........................................................

unit interpolate 1
pointnet pointnet

interpolate

In the end of each set abstraction level, the original set was subsampled, i.e., smaller.

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

‘ature learning

XG\\
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—> , &
interpolate UMt ' jpterpolate  unit
..... pointnet | pointnet

—>
sampling &
grouping

"L J
Y

set abstraction

—>
pointnet

Feature maps from the subsampled set back to the original set is propagated via interpolation.
How to propagate?

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

skip link concatenation
1

—> .
1 umt - jnterpolate unit
.. | pointnet pointnet

e
pointnet

sampling &
grouping |

S e e e = e e = e

set abstraction

Step 1, get the original set’s feature map via skip connection, i.e., copying.

Image Credit: https://arxiv.ora/pdf/1706.02413
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Feature propagation for segmentation & classification

Step 2, compute inverse distance
weighted average + concatenate.

el e E e et T T T

‘ature learning
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pointnet | pointnet

—>
sampling &
grouping

"L J
Y

set abstraction

b
pointnet

Step 2, for each point in the original set, compute the inverse distance weighted average of
features from the subsample, concatenate the interpolated feature with the current feature map.



Feature propagation for segmentation & classification

Step 2, compute inverse distance
weighted average + concatenate.

el e E e et T T T

‘ature learning

I
E N 7
o & .
¥ *’" &
& o @
N ®A ‘ s
)

SRS 1
f9(z) = = ‘4 where wi(z)=-——-,j=1,..,C (2)
> _ie1 Wi(®) _ d(z, ;)P
4 k=3 (a hyperparameter), selected via kNN.

sampling & pointnet
grouping

"L J
Y

set abstraction

Step 2, for each point in the original set, compute the inverse distance weighted average of
features from the subsample, concatenate the interpolated feature with the current feature map. **



Feature propagation for segmentation & classification

Step 3, concatenated features R(4TC2CY)
- R(d+03) via unit pointnet.

interpolate | :
| pointnet

sampling &
grouping

"L J
Y

set abstraction

pointnet

Step 3, pass the concatenated feature map to a unit pointnet that only modifies the channel
dimensions (similar to 1x1 convolutional network).
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Feature propagation for segmentation & classification

_____________ " skip link concatenation
R R R R R S R R S A R RS B S R SR A R AR R RS R A AR S R SR A A A S A A AR SR AT SRR S AP ER AR SR n EeR | i e -

—>
pointnet

pointnet sampling &
grouping

grouping

Y Y

set abstraction

Repeat, until we recover all N points from the initial set P represented by N feature vectors.

Image Credit: https://arxiv.ora/pdf/1706.02413

36


https://arxiv.org/pdf/1706.02413

Models trained for sparse point sets may not
recognize fine-grained local structures.

— — — —
pointnet sampling &
groupmg
(8 I J
Y Y
set abstraction set abstraction

Image Credit: https://arxiv.ora/pdf/1706.02413
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—> — —> —
pointnet sampling &
grouping
N\ VAN
Y Y
set abstraction set abstraction

Image Credit: https://arxiv.ora/pdf/1706.02413

Models trained for sparse point sets may not
recognize fine-grained local structures.

This challenge comes from the non-uniform
density of point sets.
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Models trained for sparse point sets may not
recognize fine-grained local structures.

This challenge comes from the non-uniform
density of point sets.

— — — —
pointnet sampling & pointnet
grouping
X U J
Y Y &
set abstraction set abstraction T \\’\3 TN
X .l ‘)' -
concat

Multi-scale Grouping (MSG): The idea is to apply different
PointNet for different group scale. Then, features of different
scales are concatenated to form a multi-scale feature.

osenevorgo )
Image Credit: https://arxiv.ora/, df/1(7 6.02413
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p=0, low drgpout™\x":

Models trained for sparse point sets may not
recognize fine-grained local structures.

This challenge comes from the non-uniform
density of point sets.

sampling &  pointnet ~ sampling&  pointnet
groupmg grouping
(8 S J
Y Y
set abstraction set abstraction

c p=0.95, high dropout

n
#f\ Multi-scale Grouping (MSG): In practice, a method the
authors called random input dropout throws away random

amounts of training dataset after grouping at training. At
testing, all available points are kept.

2)
Image Credit: https://arxiv.orq/pdf/g 6.02413
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Models trained for sparse point sets may not
recognize fine-grained local structures.

This challenge comes from the non-uniform
density of point sets.

sampling & pointnet sampling &
grouping grouping

\S AN )
Y Y

set abstraction set abstraction 3 \\"J' "

VAR RN
5’, —,—’1\“\\ Multi-resolution Grouping (MRG): Two parts of features,
Level i-1 /\ - ' > one from the PointNet subsampling of a lower level feature

map.

pointnet

Level i

Image Credit: https://arxiv.ora/pdf/1706.02413
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Models trained for sparse point sets may not
recognize fine-grained local structures.

This challenge comes from the non-uniform
density of point sets.

sampling &  pointnet ~ sampling&  pointnet
grouping grouping
\ ~ J L ~ J i
set abstraction set abstraction 1 \.':_'\'"“"'i,u\:.“
(&{0)
7S L
5’, -~*_ Multi-resolution Grouping (MRG): Two parts of features,
Level i-1 /\ - | \\) one from the PointNet subsampling of a lower level feature
. F=AE=0 map. The other from individual points in the local regions of
Levell /\ #} the current map passed through a PointNet.
®)

Image Credit: https://arxiv.ora/pdf/1706.02413
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PointNet++ < PointNet | b

skip link

interpolate unit interpolate unit
X . P pointnet erp pointnet
Classification
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grouping

class scores

pointnet fully connected layers
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set abstraction set abstraction

Output

UNet < CNN

Backbone Network
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Experiments



Experimental Setup: Algorithms

PointNet++ Variants Baselines (3D)

1. SSG (Single-Scaled Grouping) 1.  Subvolume (volumetric CNN)
2. SSG + DP (with input dropout) 2. MVCNN (multi-view CNN)

3. MSG + DP (Multi-Scaled Grouping) 3. PointNet
4. MRG + DP (Multi-Resolution Grouping) 4. PointNet (vanilla)

Baselines (2D, MNIST)

1. MLP

2. LeNet5
3. Network in Network (CNN)



Experimental Setup: Datasets

PointNet++ was evaluated on four datasets in various domains
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ModelNet40 SHREC15 ScanNet
(3D models) (non-rigid 3D models) (3D Indoor Scenes)

-
Complexity



Experiment: MNIST (2D)

MNIST images were converted to 2D point clouds of digital pixel locations.
PointNet++ is achieving an accuracy close to Network In Network CNN

;: 3’:2 ; g (éy Lt é z Method Error rate (%)
170/ 62 6 370 Multi-layer perceptron [24] 1.60
IHHRE
/6Q¢34(5733 Network in Network [13] 0.47
9219/5808¢ PointNet (vanilla) [20] 1.30
S&62L6858899 PointNet [20] 0.78
32704+ 3543 .

1961062723 PointNet++ 0.51




Experiment: ModelNet40

CAD model for 40 categories for shape classification.

B - Method Input  Accuracy (%)
-
i ¢ @l \

Subvolume [21] VOX 89.2

MVCNN [26] img 90.1

§> / \ \ b PointNet (vanilla) [20] pc 87.2

PointNet [20] pc 89.2

> PointNet++ pc 90.7

v o PointNet++ (with normal) pc 91.9

ModelNet40 PointNet is significantly more computationally

(3D models) efficient and achieves higher accuracy than voxel

and multiview based architectures using only 1024
points!



Experiment: SHREC15

Shapes in SHREC15 are 2D surfaces embedded in 3D space

Metric space Input feature Accuracy (%)
DeepGM [14] - Intrinsic features 93.03
Euclidean XYZ 60.18
" & PointNet++ Euclidean Intrinsic features 94.49
‘ : Non-Euclidean Intrinsic features 96.09
Py Intrinsic features refer to geometric properties that describe a shape’s
g underlying structure independently of its specific pose. (e.g WKS, HKS)

Non Euclidean metric refers to a Geodesic Metric, where distance is
SHREC15 measured geodesically (along surface of the shape) instead through

(non-rigid 3D models)  empty space



Experiment: ScanNet

PointNet++ is suitable for large scale point cloud analysis. The goal is to predict semantic object label for
points in indoor scans.

0.9
—] e — 0.833 0.545 0.834
§~. caniNEt non-unirorm 0.804
8 0.775 0.762
E 0.730 0.739 0.727
0.680
0.65 ~

3DCNNJ3] PointNet[19] PointNet++ PointNet++ PointNet++
(SSG) (MRG+DP) (MSG+DP)

A key challenge in ScanNet is that points are much denser near the
sensor and sparse further away (ScanNet non-uniform)

ScanNet
(3D Indoor Scenes)



PointNet++ is robust to Sampling Density Variation

Accuracy (%)

1024 points 512 points

80

75
1000 800 600 400 200

Number of Points

256 points 128 points

=—e— PointNet vanilla

== PointNet vanilla (DP)
PointNet++ (SSG)
PointNet++ (SSG+DP)

—=— PointNet++ (MSG+DP)

—=— PointNet++ (MRG+DP)

Real world sensor data suffers from
severe irregular sampling issues.

Randomly drop points during test time to
validate the network’s robustness to
non-uniform and sparse data.



Strengths



Strength 1: Theoretically Soundness

Paper builds on the proof that PointNet is a universal continuous
set function approximator:
f({=z1,...,zn}) = g(h(z1),. .., h(zn)) F:28 SR
h:RN —» RX

g:REX...xR¥ 5 R

el

PointNet accurately satisfies %5 of the properties of Point Sets:
1. Unordered
2. Invariant to Affine Transformations

PointNet++ is designed to capture interaction between points in a
Point Set while preserving unordered and invariance properties



Strength 2: Architectural Novelty

1. First work to introduce hierarchical structure to point sets, enabling the capture of
fine-grained patterns and local context.

2. The architecture is also Metric Space Agnostic: Generalizable beyond 3D
Euclidean space

3. Maintains $O(N)$ linear time and space complexity!

skip link concatenation

..........................................................................

unit

interpolate " interpolate ‘}“it
AAAAA . . pointnet pointnet
Classification
(1,C4)
sampliqg & pointnet smnpliqg & pointnet % S
grouping grouping e
4 5 4
Y 2
set abstraction set abstraction —>

pointnet fully connected layers



Strength 3: Handing Non-Uniformity

The introduction of density-adaptive layers (MSG/MRG) provides a
robust solution to the "sampling deficiency" problem common in
real-world LiDAR data.

PointNet PointNet++ Ground Truth

® Wall Floor Char ®Desk ®Bed @®Door @ Table



Weaknesses



Weaknesses and Limitations of PointNet++

1. Loss of very fine geometry in sparse regions: Sampling layer uses Farthest Point
Sampling (FPS) which might lose very fine geometry in very sparse regions

2. Manual Hyperparameter tuning: Choosing the correct radii for Ball Queries and
the number of points for each level requires significant empirical tuning.

3. Latency in Inference: Multi-Scale Grouping (MSG) and Multi-Resolution Grouping
(MRG) are computationally expensive and MSG is 2x slower than Single-Scale
Grouping (SSG). Maybe this can be improved?



Discussions



Questions (and possible extensions) regarding PointNet++

1. PointNet++ uses max-pooling to achieve permutation invariance (via PointNet
layer), but does this architectural choice limit the network's ability to learn
spatial relationships between specific points? How might we incorporate 'order’
without losing invariance?

2. PointNet++ uses Farthest Point Sampling (FPS) to reduce the point count. In
extreme cases of noise or outliers, how might FPS negatively impact the selection
of centroids compared to a uniform volumetric grid?

3. Integrating Vision-Language Models (VLMs): Given the irregular and sparse
nature of point clouds, could combining geometric features with semantic priors
from VLMs improve recognition in cluttered scenes or with heavily occluded
objects?



Take Home Message



Why should we care about PointNet++?

1. Local Context is Essential

The leap from PointNet to PointNet++ proves that global signatures are
insufficient for complex scenes; local hierarchical abstraction is the "secret
sauce" for 3D geometric deep learning.

2. Point Clouds vs. Voxels

Directly processing point sets avoids the cubic complexity ($O(N~3)$) and
quantization artifacts of voxels, making it superior for high-resolution scene
understanding.

3. Density Adaptivity is a Requirement

In real-world applications (like autonomous driving), a network must be able to
switch between fine-grained and coarse-grained features depending on
sensor distance.



Thank you!



Q&A / Feedbacks
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Q&A / Feedbacks
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Additional Strengths



What are Point Sets?

A collection of points $\{P_{i} | i=1,...,n\}$ in
a $d$-dimensional Euclidean space,
typically $R*3$ for 3D applications

Properties:

1. Unordered

3. Transformation Invariance
3. Interaction among points

67



PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation

y 7’ mug?

— . ™, wle Classification
Y?

-
PointNet — l

Point Cloud (Set):
1. (X, Y, z) coordinates
2. Color channels (r,g,b)
3. ... Semantic Segmentation
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Experiment: SHREC15

&

v oo

]
&

A (0

SHREC15
(non-rigid 3D models)

Metric space Input feature Accuracy (%)
DeepGM [14] - Intrinsic features 93.03
Euclidean XYZ 60.18
PointNet++ Euclidean Intrinsic features 94.49
Non-Euclidean Intrinsic features 96.09




PointNet is Invariant under transformation

Align all input sets to a canonical space
before exiracting features

T (Transform)-Net takes raw coordinates
and predicts a 3x3 transformation matrix

“Mini-PointNet”

1. Shared MLPs

2. Max Pooling

3. Fully connected Layers

" input points

input

—

I:ransform
(an]
>
=
1

Classification Network
mlp (64,64)

P

feature

shared

nx64

transform
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How does PointNet satisfy the properties of Point Sets?

PointNet is invariant to input ordering due to Max Pooling

fq@1 s 2a}) = g(h(@r), . h(za) f(@1, 22,y 0n) = 7 (il\qAXn {h(xz-)}>

.....

s i 2RY 4 R
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3.9:REx...xRX - R Max Pooling + Global Signature
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Classification Network

input mlp (64,64) feature mip (64,128,1024) max ‘ mlp
E transform :E:: transform E ] pool 1oy (512,256.k)
S |m ) 3 3 | —
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Segmentation Network



PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation

MLPs with shared weights: h(x_1), h(x_2),...h(x_n)  Max Pooling gives order invariance
Classification Network

............. me ............... mlp(6464) ................ T mlp(64 128 24) .................. max ................ e, mlp ........
g tragsform transform pool 1024 (512,256,k)
)
217 (2| hred | B ] 1 Z LTI Y e—
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Problem Statement

Suppose that X = (M, d) is a discrete metric space whose metric is inherited from a Euclidean space

R~d, where M C|R"d|is the set of points and d is the distance metric. In addition, the density of M

in the ambient Euclidean space may not be uniform everywhere. We are 1nterested in learning set
functions f that take such X as the input (along with additional features for eack and produce

information of semantic interestregrading X'. In practice, such f can : nction that
assigns a label to & or a unction that assigns a per point label to each member of M.
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functions f that take such X as the 1nput (along with additional features for eack and produce

information of semantic in grading X'. In practice, such f can : nction that
assigns a label to & or a unction that assigns a per point label to each member of M.

Input coord. set I _x = {x1,....xN} in R*d + their feature vectors {hl,...hN} in R*C.

A set abstraction level takes input that is from N points with d-dim

coordinates and C-dim point feature. It oH E J m anN X (d 4+ C') matrix of N’ subsampled points

with d-dim coordinates and new C’-dim feature vectors summarizing local context. We introduce the
layers of a set abstraction level in the following paragraphs.



Multi-scale grouping (MSG). As shown in Fig.|3/(a), a simple but effective way to capture multi-
scale patterns is to apply grouping layers with different scales followed by according PointNets to
extract features of each scale. Features at different scales are concatenated to form a multi-scale
feature.

We train the network to learn an optimized strategy to combine the multi-scale features. This is done
by randomly dropping out input points with a randomized probability for each instance, which we call
random input dropout. Specifically, for each training point set, we choose a dropout ratio § uniformly
sampled from [0, p] where p < 1. For each point, we randomly drop a point with probability . In
practice we set p = 0.95 to avoid generating empty point sets. In doing so we present the network
with training sets of various sparsity (induced by 6) and varying uniformity (induced by randomness
in dropout). During test, we keep all available points.

Multi-resolution grouping (MRG). The MSG approach above is computationally expensive since
it runs local PointNet at large scale neighborhoods for every centroid point. In particular, since the
number of centroid points is usually quite large at the lowest level, the time cost is significant.

Here we propose an alternative approach that avoids such expensive computation but still preserves
the ability to adaptively aggregate information according to the distributional properties of points. In
Fig. (b), features of a region at some level L; is a concatenation of two vectors. One vector (left in
figure) is obtained by summarizing the features at each subregion from the lower level L;_; using
the set abstraction level. The other vector (right) is the feature that is obtained by directly processing
all raw points in the local region using a single PointNet.
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