
POINT TRANSFORMER V3:
SIMPLER FASTER STRONGER

CHENG CHEN & ALEC DIGBY

EECE 571F

CONTENTS

• Paper Overview

• Point Transformers Introduction

• Previous Methods

• Scaling Principle and Computational Efficiency

• Receptive Field

• Key Optimizations

• Performance Results

• Thoughts and Critiques

• References

PAPER OVERVIEW

• Publication Date: March 25, 2024

• Authors: Xiaoyang Wu1,2, Li Jiang3, Peng-Shuai Wang4, Zhijian Liu5, Xihui Liu1,
Yu Qiao2, Wanli Ouyang2, Tong He2*, Hengshuang Zhao1*

• Affiliate Organizations: 1HKU 2SH AI Lab 3CUHK(SZ) 4PKU 5MIT

• Key Takeaway: By improving computational efficiency, point transformers can
leverage the power of scaling. Scaling is more important than intricate design
for model performance.

PAPER OVERVIEW

• Progress is made here through an engineering approach rather than a theoretical one [1].

• Approximations are good if they unlock scaling through efficiency.

• Specific Innovations:

• Replaces precise neighbor search (KNN) with serialized mapping.

• Replaces complex attention patch interactions (ex. shift window) with a streamlined approach.

• Eliminates reliance on relative positional encoding by using a sparse convolutional layer.

• All the key contributions of this paper are related to computational efficiency.

• Improvement Over PTv2 [2]:

• 3.3x inference speed[1]:

• 10.2x reduction in memory usage [1].

• Receptive field increased from 16 to 1024 points [1].

• Results: Achieves state of the art accuracy on benchmark datasets.

WHAT’S THE POINT?

• Perform tasks on 3d point data.
• Classification

• Part Segmentation

• Semantic Segmentation (most useful)

• Applications:
• Autonomous driving

• Augmented reality

• Robotics [3]

Image Credit: [3]

PREVIOUS METHODS BEFORE TRANSFORMERS

• Deep Sets [4]

• PointNet++ [5]

• Graph Methods [6]

• PointCNN [7]

POINT TRANSFORMERS

• Introduced in Point transformer v1 [3].

• Uses attention to aggregate neighborhoods (instead of fixed pooling). More
expressive.

• Relaxes invariance internally while keeping it globally. (Previous methods such as
PointNet++ [5] require invariance at every layer, transformers get around this.)

• Improved in Point Transformer v2 [2].

SCALING PRINCIPLE

• Scaling law for LLMS: “The loss scales as a power-law with model size, dataset
size, and the amount of compute used for training” [8].

• Generally, bigger is better.

• In the case of point transformers, a larger receptive field provides the
greatest performance gains, rather than parameter count, dataset size etc.

• Scaling is enabled through increased computational efficiency.

RECEPTIVE FIELD

• The region of the input that influences a point’s feature.

• Analogous to the context length of an LLM.

• Larger receptive field = better generalization capabilities [1].

• “PTv3 capitalizes on its inherent ability to scale the range of perception,
expanding its receptive field from 16 to 1024 points while maintaining
efficiency.” [1].

RECEPTIVE FIELD – CONVOLUTION ANALOGY

• In an image CNN, each layer expands
the receptive field, moving from local
features such as edges to larger features
such as object parts.

• Point cloud transformers similarly
identify local features within the
receptive window and move to global
features at later layers.

• Expanding the receptive window
essentially allows us to jump to larger
and more complex features, increasing
the expressiveness of the model. Image Credit: [9]

SPECIFIC OPTIMIZATIONS TO UNLOCK SCALING

• Removed relative positional encoding.

• Removed shift window attention.

• Replaced grouping algorithms with
point cloud serialization. [1]

Image Credit: [1]

OPTIMIZATION: REMOVED RELATIVE POSITIONAL
ENCODING

• Relative positional encoding ≈ large-kernel Sparse Convolution.

• Sparse convolution: Gives the network information about local
geometry more efficiently.

• Improvements:

o replaces Relative Positional Encoding with a prepositive
sparse conv layer + skip connection.

o Relative Positional Encoding (RPE) -> Enhanced Conditional
Positional Encoding (xCPE)

Image Credit: [10]

OPTIMIZATION: REMOVED SHIFT WINDOW
ATTENTION

• “PTv3 replaces more complex attention patch interaction mechanisms, like shift-window (impeding the fusion of
attention operators) and the neighborhood mechanism (causing high memory consumption), with a streamlined
approach tailored for serialized point clouds.” [1]

• Shift Window:

• Partition input into local windows to compute attention within each window.

• Shift the windows so that points in different windows can interact.

• Cons:

• Unlike images, point clouds are sparse and non-uniform, so partitioning it into a grid makes less sense.

• “Impedes the fusion of attention operators”, meaning that larger context and features are broken up by
windowing, requires multiple layers to propagate information.

• Improvements:

• Point cloud serialization naturally does not create these window boundaries and artifacts.

OPTIMIZATION: MORE EFFICIENT GROUPING
ALGORITHMS

• Computationally hard to compute attention across the entire point cloud, better to
define a local group of neighbors.

• “PTv3 shifts from the traditional spatial proximity defined by K-Nearest Neighbors
(KNN) query, accounting for 28% of the forward time. Instead, it explores the
potential of serialized neighborhoods in point clouds, organized according to specific
patterns.” [1]

• K-Nearest Neighbors (KNN). O(N2).

• Radius Search, not a fixed number of neighbors. Also O(N2).

• KNN Responsible for 28% of forward time in PTV2. [1][2]

POINT CLOUD SERIALIZATION

• Space-filling Curves:

o Use a 3D traversal pattern to serialize points into a sequence.

• Approximate neighborhoods are the points within a certain
window of the resulting sequence.

• “The ordering effectively rearranges the points in a manner
that respects the spatial ordering defined by the given
space filling curve, which means that neighbor points in
the data structure are also likely to be close in space.” [1]

Image Credit: [1]

POINT CLOUD SERIALIZATION

Neighbors

POINT CLOUD SERIALIZATION

• O(N2) -> O(N)

• Uses multiple space filling curves to smooth
out approximation errors of any given curve.

• “In our implementation, we do not physically
re-order the point clouds, but rather, we
record the mappings generated by the
serialization process. This strategy maintains
compatibility with various serialization
patterns and provides the flexibility to
transition between them efficiently.” [1]

Image Credit: [1]

• Patch Grouping
• Partitioning 1D sequences into fixed-size

segments.

• Patch Interaction
• Shift Dilation
• Shift Patch
• Shift Order
• Shuffle Order

• The Trade-off: Efficiency & Scalability over minor loss
in neighborhood precision.

PATCH ATTENTION

Image Credit: [1]

Image Credit: [1]

“BREAKING THE CURSE OF PERMUTATION
INVARIANCE”

• “Current point transformers encounter challenges in scaling when adhering to the request of
permutation invariance.” [1]

• From lecture on deep sets: a permutation invariant layer will have less trainable parameters, which
bottlenecks the model. [10].

• “…we move away from the traditional paradigm, which treats point clouds as unordered sets. Instead,
we choose to “break” the constraints of permutation invariance by serializing point clouds into a
structured format.” [1]

• Point cloud serialization achieves overall permutation invariance without requiring invariance internally.

• Any ordering of the same points will map to the same serialization (permutation invariant). After this,
the model treats it as a sequence instead (not permutation invariant).

PAPER RESULTS

• Outperforms all previous algorithms on several indoor
and outdoor semantic segmentation datasets.

• Achieves large reductions in memory use and increase
in speed over PTv2.

Image Credit: [1]

Image Credit: [1]

Image Credit: [1]

Image Credit: [1]

PERSONAL THOUGHTS – ROTATION AND SCALE
INVARIANCE (ALEC)

• KNN – rotation and scale invariant.

• Radius search – rotation invariant.

• Point cloud serialization – technically not rotation or scale invariant.

• Using multiple space filling curves reduces this issue, and dataset augmentation would help further.

• Overall, the paper says that the benefits of scaling up the model due to improved efficiency outweigh
the drawbacks of such approximations.

PERSONAL THOUGHTS (CHENG)
• Scalability & efficiency First

o scaling potential > intricate module design

o Receptive field

o Utilize GPU characteristics

• Structuring Unstructured Data

• Questions:

o Generalizability of 3D-to-1D Serialization

o What is the 'living legacy' of this work if Transformers are replaced?

• Suggestions

o Ultimate Optimization: Hardware-Aware Co-Design

REFERENCES

• [1] X. Wu, L. Jiang, P.-S. Wang, Z. Liu, X. Liu, Y. Qiao, W. Ouyang, T. He, and H. Zhao, “Point Transformer V3: Simpler, Faster, Stronger,” arXiv preprint arXiv:2312.10035,
Dec. 2023.

• [2] X. Wu, Y. Lao, L. Jiang, X. Liu, and H. Zhao, “Point Transformer V2: Grouped Vector Attention and Partition -based Pooling,” arXiv preprint arXiv:2210.05666, Oct. 2022.

• [3] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point Transformer,” arXiv preprint arXiv:2012.09164, Dec. 2020.

• [4] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, and A. Smola, “Deep Sets,” arXiv preprint arXiv:1703.06114, Mar. 2017.

• [5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,” arXiv preprint arXiv:1706.02413, Jun. 2017.

• [6] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” arXiv preprint arXiv:1801.07829, Jan.
2018.

• [7] Y. Li, R. Bu, M. Sun, and B. Chen, “PointCNN: Convolution on X-Transformed Points,” arXiv preprint arXiv:1801.07791, Jan. 2018.

• [8] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D., “Scaling Laws for Neural Language Models,” arXiv
preprint arXiv:2001.08361, Jan. 2020, doi: 10.48550/arXiv.2001.08361.

• [9] AnalytixLabs, “Convolutional Neural Networks – Definition, Architecture, Types, Applications, and more,” AnalytixLabs Blog, Jan. 08, 2024. [Online].

• [10] R. Liao, “Lecture 2: Invariance, Equivariance, and Deep Learning Models for Sets/Sequences,” EECE 571F: Advanced Topics in Deep Learning, University of British
Columbia, Vancouver, BC, Canada, Winter Term 2, 2025. [Online].

• [11] https://zhuanlan.zhihu.com/p/382365889

	Slide 1: Point Transformer V3: Simpler Faster Stronger
	Slide 2: Contents
	Slide 3: Paper Overview
	Slide 4: Paper Overview
	Slide 5: What’s the Point?
	Slide 6: Previous Methods Before Transformers
	Slide 7: Point Transformers
	Slide 8: Scaling Principle
	Slide 9: Receptive Field
	Slide 10: Receptive Field – Convolution Analogy
	Slide 11: Specific Optimizations to Unlock Scaling
	Slide 12: Optimization: Removed Relative Positional Encoding
	Slide 13: Optimization: Removed Shift Window Attention
	Slide 14: Optimization: More Efficient Grouping Algorithms
	Slide 15: Point Cloud Serialization
	Slide 16: Point Cloud Serialization
	Slide 17: Point Cloud Serialization
	Slide 18: Patch Attention
	Slide 19: “Breaking the Curse of Permutation Invariance”
	Slide 20: Paper Results
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Personal Thoughts – Rotation and Scale Invariance (Alec)
	Slide 25: Personal Thoughts (Cheng)
	Slide 26: References

