POINT TRANSFORMER V3:
SIMPLER FASTER STRONGER

CHENG CHEN & ALEC DIGBY
EECE 571F

CONTENTS

* Paper Overview

* Point Transformers Introduction

* Previous Methods

e Scaling Principle and Computational Efficiency
* Receptive Field

* Key Optimizations

* Performance Results

* Thoughts and Critiques

 References

PAPER OVERVIEW

e Publication Date: March 25, 2024

* Authors: Xiaoyang Wu'?, Li Jiang3, Peng-Shuai Wang?, Zhijian Liu>, Xihui Liu?,
Yu Qiao?, Wanli Ouyang?, Tong He?", Hengshuang Zhao'"

 Affiliate Organizations: tHKU 2SH Al Lab 3CUHK(SZ) “PKU >MIT

» Key Takeaway: By improving computational efficiency, point transformers can
leverage the power of scaling. Scaling is more important than intricate design

for model performance.

PAPER OVERVIEW

* Progress is made here through an engineering approach rather than a theoretical one [1].
e Approximations are good if they unlock scaling through efficiency.
* Specific Innovations:
* Replaces precise neighbor search (KNN) with serialized mapping.
* Replaces complex attention patch interactions (ex. shift window) with a streamlined approach.
* Eliminates reliance on relative positional encoding by using a sparse convolutional layer.
» All the key contributions of this paper are related to computational efficiency.
* Improvement Over PTv2 [2]:
* 3.3x inference speed[1]:
e 10.2x reduction in memory usage [1].
* Receptive field increased from 16 to 1024 points [1].

e Results: Achieves state of the art accuracy on benchmark datasets.

WHAT’S THE POINT?

* Perform tasks on 3d point data.
* Classification
* Part Segmentation
* Semantic Segmentation (most useful)

* Applications:
* Autonomous driving

* Augmented reality
* Robotics [3]

Point Transformer

Image Credit: [3]

PREVIOUS METHODS BEFORE TRANSFORMERS

* Deep Sets [4]
 PointNet++ [5]
 Graph Methods [6]
e PointCNN [7]

POINT TRANSFORMERS

* Introduced in Point transformer v1 [3].

e Uses attention to aggregate neighborhoods (instead of fixed pooling). More
expressive.

* Relaxes invariance internally while keeping it globally. (Previous methods such as
PointNet++ [5] require invariance at every layer, transformers get around this.)

* Improved in Point Transformer v2 [2].

SCALING PRINCIPLE

* Scaling law for LLMS: “The loss scales as a power-law with model size, dataset
size, and the amount of compute used for training” [8].

* Generally, bigger is better.

* In the case of point transformers, a larger receptive field provides the
greatest performance gains, rather than parameter count, dataset size etc.

* Scaling is enabled through increased computational efficiency.

RECEPTIVE FIELD

* The region of the input that influences a point’s feature.
* Analogous to the context length of an LLM.
* Larger receptive field = better generalization capabilities [1].

* “PTv3 capitalizes on its inherent ability to scale the range of perception,
expanding its receptive field from 16 to 1024 points while maintaining
efficiency.” [1].

RECEPTIVE FIELD — CONVOLUTION ANALOGY

* [n an image CNN, each layer expands

Output

the receptive field, moving from local _ | sty
features such as edges to larger features Pl
g e ¢ 4 3rd hidden layer
such as object parts.) (BN) (Bl) eviecirons
* Point cloud transformers similarly | n’ -
identify local features within the i) [/ (cormers and cantours)
receptive window and move to global 2
1st hidden layer
features at later layers. | | (edges)
* Expanding the receptive window =
essentially allows us to jump to larger p

and more complex features, increasing .
the expressiveness of the model. Image Credit: [9]

SPECIFIC OPTIMIZATIONS TO UNLOCK SCALING

Inference Latency

3.3 x faster

* Removed relative positional encoding.
e Removed shift window attention. Faster Speed

* Replaced grouping algorithms with
point cloud serialization. [1] _ Memory Consumption

10.2x lower

Lower Memory Consumption

Image Credit: [1]

OPTIMIZATION: REMOVED RELATIVE POSITIONAL
ENCODING

* Relative positional encoding = large-kernel Sparse Convolution.

e Sparse convolution: Gives the network information about local
geometry more efficiently.

* Improvements:

o replaces Relative Positional Encoding with a prepositive

Sparse conv Iayer + Skip connection. s
Image Credit: [10]

o Relative Positional Encoding (RPE) -> Enhanced Conditional
Positional Encoding (xCPE)

OPTIMIZATION: REMOVED SHIFT WINDOW
ATTENTION

 “PTv3replaces more complex attention patch interaction mechanisms, like shift-window (impeding the fusion of
attention operators) and the neighborhood mechanism (causing high memory consumption), with a streamlined
approach tailored for serialized point clouds.” [1]

e Shift Window:
* Partition input into local windows to compute attention within each window.
e Shift the windows so that points in different windows can interact.
* Cons:
e Unlike images, point clouds are sparse and non-uniform, so partitioning it into a grid makes less sense.

* “Impedes the fusion of attention operators”, meaning that larger context and features are broken up by
windowing, requires multiple layers to propagate information.

* Improvements:

* Point cloud serialization naturally does not create these window boundaries and artifacts.

OPTIMIZATION: MORE EFFICIENT GROUPING
ALGORITHMS

 Computationally hard to compute attention across the entire point cloud, better to
define a local group of neighbors.

e “PTv3 shifts from the traditional spatial proximity defined by K-Nearest Neighbors
(KNN) query, accounting for 28% of the forward time. Instead, it explores the
potential of serialized neighborhoods in point clouds, organized according to specific
patterns.” [1]

* K-Nearest Neighbors (KNN). O(N?2).
e Radius Search, not a fixed number of neighbors. Also O(N?).
 KNN Responsible for 28% of forward time in PTV2. [1][2]

POINT CLOUD SERIALIZATION

* Space-filling Curves:

o Use a 3D traversal pattern to serialize points into a sequence.

e Approximate neighborhoods are the points within a certain
window of the resulting sequence.

* “The ordering effectively rearranges the points in a manner
that respects the spatial ordering defined by the given
space filling curve, which means that neighbor points in
the data structure are also likely to be close in space.” [1]

Image Credit: [1]

POINT CLOUD SERIALIZATION

.

SS|

Neighbors

POINT CLOUD SERIALIZATION
* O(N?) -> O(N)

* Uses multiple space filling curves to smooth
out approximation errors of any given curve.

(a) Z-order

* “In our implementation, we do not physically
re-order the point clouds, but rather, we (c) Trans Z-order
record the mappings generated by the
serialization process. This strategy maintains
compatibility with various serialization
patterns and provides the flexibility to
transition between them efficiently.” [1]

Image Credit: [1]

PATCH ATTENTION Rt

 Patch Grouping Kb
e Partitioning 1D sequences into fixed-size
segments.

(a) Standard

e Patch Interaction |
e Shift Dilation ey
e Shift Patch omaiae

(c) Shift Patch

* Shift Order R P PR
» Shuffle Order osose smmeoss

e The Trade-off: Efficiency & Scalability over minor loss |
in neighborhood precision. Image Credit: [1]

“BREAKING THE CURSE OF PERMUTATION
INVARIANCE”

e “Current point transformers encounter challenges in scaling when adhering to the request of
permutation invariance.” [1]

* From lecture on deep sets: a permutation invariant layer will have less trainable parameters, which
bottlenecks the model. [10].

e “..we move away from the traditional paradigm, which treats point clouds as unordered sets. Instead,
we choose to “break” the constraints of permutation invariance by serializing point clouds into a
structured format.” [1]

* Point cloud serialization achieves overall permutation invariance without requiring invariance internally.

* Any ordering of the same points will map to the same serialization (permutation invariant). After this,
the model treats it as a sequence instead (not permutation invariant).

PAPER RESULTS

* OQutperforms all previous algorithms on several indoor
and outdoor semantic segmentation datasets.

* Achieves large reductions in memory use and increase
in speed over PTv2.

ScanNet200
Sem. Seg. _

S3DIS 6-Fold
Sem. Seg.

S3DIS
Sem. Seg. =

ScanNet
Ins. Seg.

ScanNet200 @
Ins. Seg.

Waymo
Vehicle Det.

Waymo ’

Pedestrian Det.

PTv3 PTv2 FlatFormer

ScanNet
Sem. Seg.

Wamo

Cyclist Det.

OctFormer

ScanNet Eff.

ScanNet Eff.

ScanNet Eff.
@ LR 20%

ScanNet Eff.
LR. 1%

8 SemanticKITTI
Sem. Seg.

¥ nuScenes
Sem. Seg.

" Waymo

Sem. Seg.

SphereFormer MinkUNet

Stronger Performance

Image Credit: [1]

Indoor Sem. Seg. ScanNet [17] ScanNet200 [67] S3DIS [2]

Methods Val Test ; Test Area5 6-fold

oMinkUNet [13] 72.2 73.6 5. 25.3 65.4 65.4
o ST [40] 74.3 73.7 72.0 -

oPointNeXt [64] 71.5 71.2 70.5 74.9
o OctFormer [83] 73.7 76.6 - -

oSwin3D [101] 76.4 - 72.5 76.9
oPTvl [106] 70.6 - 70.4 65.4
o PTv2 [90] 75.4 74.2 71.6 73.5
o PTv3 (Ours) 77.5 77.9 37.8 73.4 77.7
e PTv3 (Ours) 78.6 79.4 39.3 74.7 80.8

ld
D
o

b L
& O 3y
= 0 o 00

»
=

Table 5. Indoor semantic segmentation.

Image Credit: [1]

Outdoor Sem. Seg. nuScenes [5] Sem.KITTI[3] Waymo Val [72]

Methods Val Test Val Test mloU mAcc

o MinkUNet [13] 73. - 63.8 - 65.9 76.6
o SPVNAS [73] 77 .4 - 64.7 66.4 -

o Cylinder3D [108] 76. 772 643 67.8 -

o AF2S3Net [10] 2.2 78.0 74.2 70.8 -

o 2DPASS [98] 80.8 69.3 72.9 -

o SphereFormer [41] 78.4 81.9 67.8 74.8 69.9

o PTv2 [90] 80.2 826 703 72.6 70.6

o PTv3 (Ours) 80.4 82.7 70.8 74.2 71.3

e PTv3 (Ours) 81.2 83.0 723 75.5 72.1

Table 7. Outdoor semantic segmentation.

Image Credit: [1]

Indoor Ins. Seg. ScanNet [17] ScanNet200 [67]

PointGroup [35] mAP25 mAP59g mAP mAP2s mAP590 mAP

oMinkUNet [13] 72.8 56.9 36.0 32.2 24.5 15.8
o PTv2 [90] 76.3 60.0 38.3 39.6 31.9 21.4
o PTv3 (Ours) T71.5 61.7 40.9 40). 33.2 23.1
e PTv3 (Ours) 78.9 63.5 42.1 40. 34.1 24.0

Table 8. Indoor instance segmentation.

Image Credit: [1]

PERSONAL THOUGHTS — ROTATION AND SCALE
INVARIANCE (ALEC)

* KNN —rotation and scale invariant.

* Radius search — rotation invariant.

* Point cloud serialization — technically not rotation or scale invariant.

* Using multiple space filling curves reduces this issue, and dataset augmentation would help further.

e Overall, the paper says that the benefits of scaling up the model due to improved efficiency outweigh
the drawbacks of such approximations.

PERSONAL THOUGHTS (CHENG)

Scalability & efficiency First

o scaling potential > intricate module design
o Receptive field

o Utilize GPU characteristics

Structuring Unstructured Data

Questions:
o Generalizability of 3D-to-1D Serialization

o Whatis the 'living legacy' of this work if Transformers are replaced?

Suggestions

o Ultimate Optimization: Hardware-Aware Co-Design

REFERENCES

. [1] X. Wu, L. Jiang, P.-S. Wang, Z. Liu, X. Liu, Y. Qiao, W. Ouyang, T. He, and H. Zhao, “Point Transformer V3: Simpler, Faster, Stronger,” arXiv preprint arXiv:2312.10035,
Dec. 2023.

. [2] X. Wu, Y. Lao, L. Jiang, X. Liu, and H. Zhao, “Point Transformer V2: Grouped Vector Attention and Partition-based Pooling,” arXiv preprint arXiv:2210.05666, Oct. 2022.
. [3] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point Transformer,” arXiv preprint arXiv:2012.09164, Dec. 2020.

. [4] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Péczos, R. Salakhutdinov, and A. Smola, “Deep Sets,” arXiv preprint arXiv:1703.06114, Mar. 2017.

. [5] C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,” arXiv preprint arXiv:1706.02413, Jun. 2017.

. [6] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” arXiv preprint arXiv:1801.07829, Jan.
2018.

. [7] Y. Li, R. Bu, M. Sun, and B. Chen, “PointCNN: Convolution on X-Transformed Points,” arXiv preprint arXiv:1801.07791, Jan. 2018.

. [8] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D., “Scaling Laws for Neural Language Models,” arXiv
preprint arXiv:2001.08361, Jan. 2020, doi: 10.48550/arXiv.2001.08361.

. [9] AnalytixLabs, “Convolutional Neural Networks — Definition, Architecture, Types, Applications, and more,” AnalytixLabs Blog, Jan. 08, 2024. [Online].

. [10] R. Liao, “Lecture 2: Invariance, Equivariance, and Deep Learning Models for Sets/Sequences,” EECE 571F: Advanced Topics in Deep Learning, University of British
Columbia, Vancouver, BC, Canada, Winter Term 2, 2025. [Online].

. [11] https://zhuanlan.zhihu.com/p/382365889

	Slide 1: Point Transformer V3: Simpler Faster Stronger
	Slide 2: Contents
	Slide 3: Paper Overview
	Slide 4: Paper Overview
	Slide 5: What’s the Point?
	Slide 6: Previous Methods Before Transformers
	Slide 7: Point Transformers
	Slide 8: Scaling Principle
	Slide 9: Receptive Field
	Slide 10: Receptive Field – Convolution Analogy
	Slide 11: Specific Optimizations to Unlock Scaling
	Slide 12: Optimization: Removed Relative Positional Encoding
	Slide 13: Optimization: Removed Shift Window Attention
	Slide 14: Optimization: More Efficient Grouping Algorithms
	Slide 15: Point Cloud Serialization
	Slide 16: Point Cloud Serialization
	Slide 17: Point Cloud Serialization
	Slide 18: Patch Attention
	Slide 19: “Breaking the Curse of Permutation Invariance”
	Slide 20: Paper Results
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Personal Thoughts – Rotation and Scale Invariance (Alec)
	Slide 25: Personal Thoughts (Cheng)
	Slide 26: References

