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Transformer

* Transformer architecture [*] has been used in nearly all the LLMs that
are being used today

* New architectures are being developed: Mamba, a State Space Model

Qutput
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rojection 8 .
Add & Nom prel Communication
Forward Nx
‘:’ Sequence
transformation
Nx Add & Norm
Nonlineari ity
® (activation or .
multiplication) Computation
—__—) |
Positional Positional
Encoding Encoding
I Input I I Output ]
Embedding Embedding M a m ba
Inputs Outputs
(shifted right)

[*] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. 2017.

Attention Is All You Need. NIPS 2017.
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Transformer
Training Inference
Fast! Slow...
Transformers (parallelizable) (scales quadratically with sequence length)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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RNNs

Training Inference
Fast! Slow...
Transformers (parallelizable) (scales quadratically with sequence length)
Slow... Fast!
RNNs (not parallelizable) (scales linearly with sequence length)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Transformers

RNNs

Best of Two Worlds?

Training

Fast!

(parallelizable)

Slow...
(not parallelizable)

Fast!

(parallelizable)

Inference

Slow...
(scales quadratically with sequence length)

Fast!

(scales linearly with sequence length)

Fast!

(scales linearly with sequence length)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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State Space Model (SSM)

e SSMs [*] Traditionally used in control theory to model a dynamic
system via state variables

 Models used to describe these state representations and make
predictions of what their next state could be depending on some input

[*] Albert Gu, Karan Goel, Christopher Ré. 2021. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR.
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State Space Model (SSM)

At time t
* X(t) input sequence - Continuous
* h(t) current state
* y(t) output sequence - Continuous

Input Output
(sequence) (sequence)
State Space Model
r\/ — (SSM) — f\J

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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State Space Model (SSM)

- SSMs assume that dynamic systems, such as an object moving in 3D
space, can be predicted from its state at time t through two equations.

State equation h'(t) - Ah(t) + BX(t)

- h’(t): the way the state is changing at time t

Output equation y(t) = Ch(t) + DX(t)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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The State Equation
state
- h'(t) ;=: A * h(t):+: B *  x(t)
State update How the current How the input
state evolves over influences the state
time

A Matrix how the current state h, influences the future state
B Matrix how a given input affects each state variable

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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The Output Equation

State

y(t) :=; € % h(t):+; D . x(t)
Output How the current How the input
state translates to directly influences the
the output output

C Matrix the relationship between the internal state variables and the outputy
D Matrix how the input directly influences the observed system output (often
omitted)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Overview

Input Output
(sequence) SSM (sequence)
state equation

h'(t) = Ah(t) + Bx(t)

output equation

y(t) = Ch(t) + Dx(t)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

12
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SSM Step-By-Step

N
S

multiply

Input
X (t)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Step-By-Step

State Representation

@ — B[ T1H fsum)
multiply
Input updates during training

X (t) A |

multiply

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Step-By-Step

State Representation

am

@ —— B (oum) C
multiply

Input updates during training

X (t) A |

multiply

multiply

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Step-By-Step

multiply

£

S e

multiply

State Representation

updates during training

C

multiply

i Yo,

Output

A .

multiply

y(t)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Step-By-Step

multiply

£

S e

multiply

Gum

State Representation

2

sum

A4

updates during training

C

multiply

Ea

AR

State Space Model

multiply

)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Discretization

« Finding h(t) is challenging if you have continuous signal
- What if input is discrete (e.g. text sequence)

- Discrete input signal -> continuous input signal: Zero order hold technique

Discrete Signal Continuous Signal
(Input) (Input)

Hold each value

until we reach step size (A)
® ’ ‘ another ’— ‘__
E ® 5 ¢ ’ ® | [ —
. L - 3 4 0 1 2 3 4
Time t Time t

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Discretization

« Finding h(t) is challenging if you have continuous signal
- What if input is discrete (e.g. text sequence)

- Discrete input signal -> continuous input signal: Zero order hold technique

Discrete Signal Continuous Signal
(Input) (Input)

Hold each value

until we reach step size (A)
® ’ © another .5 *—
: O : ¢ . ' s [ —
: ' Learnable Parameter
. i : 3 - 0 1 2 3 4

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Discretization

« Finding h(t) is challenging if you have continuous signal
- What if input is discrete (e.g. text sequence)

- Continuous output signal -> discrete input signal

Continous Signal Discrete Signal
(Output) (Output)
Sample from
\/\/ timesteps
0 1 2 3 4 1 2 3 4
Timet Time t

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Discretization: Mathematically

Discretized matrix A K = eXp (AA)

Discretized matrix B E — (AA)_‘I (eXp(AA)— I)- AB

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Continuous and Discrete SSM

Input Output
(sequence) Continuous SSM (sequence)

h'(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

state equation
hk - Ahk_1 + BXk
output equation

Y. = Ch,
Discrete SSM

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Recurrent Representation

@ Output

(sequence)

b

'

w O

=
o
c
7]
).
n
<

® - Ah(t) + Bx(t)
t) = Ch(t) ~ Similar to RNN
+ Fast inference

- Slow training

SSM
RNN (Recurrent)

state equation
hk = Ahk—'l I BXk
® o o output equation ® o o

’ ’
Discrete SSM

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

23
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Convolution Representation

state equation - State equation
hk = Ahk—'l 5 o BXk

output equation Step 0: h = Bx,
y. = Ch, Step 1: h Ah + Bx,= ABx, + Bx,

Step 2: h —Ah +Bx—AZBx +ABx+Bx

Output equation

Step 0: y,= Ch, = CBx,

Step 1: y,= Ch CABx + CBx,

Step 2: y = Ch CAsz + CABx +CBx,

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Convolution Representation

state equation - State equation
hk = Ahk—'l 5 o BXk

output equation Step 0: h = Bx,
y. = Ch, Step 1: h Ah + Bx,= ABx, + Bx,

Step 2: h —Ah +Bx—AZBx +ABx+Bx

Output equation

Step 0: y,= Ch, = CBx,

Step 1: y,= Ch CABx + CBx,

Step 2: y = Ch CAZBX + CABx +CBx,

—k—

K =(CB,CAB, ... CAB, ..)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/ 25
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Convolution Representation

—k_—

kernel — K = (CB, CAB, ..., CA B, ...)

y=x+K
o N

output input  Kkernel

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Three Representations

Continuous-time Recurrent or Convolutional

Discretize
] Pé‘:%

name IS
C c
X @ E @ >y A( State ] ( State J
| : B B
My name
v efficient inference X unbounded context
X parallelizable training v parallelizable training

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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SSM Three Representations

Continuous-time Recurrent Convolutional
Discre'tizei,‘n_‘
name IS
X @ E @ >y A( State ] ( State J
I : B B
My name
v efficient inference X unbounded context
X parallelizable training v parallelizable training
Inference Mode Training Mode }
28

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.hifps://www.maartengrootendorst.com/blog/mamba/
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Linear Time Invariant (LTI)

state equation

h, = Ah,, + BX, « SSM parameters are fixed for all

timestamps

output equation

« A, B, C matrices are the same for
every generated token by SSM
— Static
— Not content-aware

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

29
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A’ Matrix

* Captures information about previous state to generate the new state

* Depending on the value of matrix A:
— Remembering only a few previous tokens
or
— Capturing every token we have seen thus far

 how can we create matrix A in a way that retains a large memory

(context size)?
— HiPPO: High-order Polynomial Projection Operators

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

30
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HiPPO

« Compress all input signals it has seen thus far into a vector of
coefficients

Input Signal Reconstructed Signal

HiPPO
small degration

(compress and
reconstruct signal 5 of newer steps
information) N
large degration

of older steps

0 1 2 3 4 0 1 g 3 4
Time t Time t

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

31
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HiPPO

- Capture recent tokens well
- Decays older tokens

1 o o 0}
r 172 1/2 everythi
ything below the
(2" + 1) (2k T 1) diagonal 1 2 o o B
HiPPO Matrix Ank '< n + 1 the diagonal 1 3 3 0
everything above the 1 3 5 4
k O diagonal
n
32

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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The S4 SSM

Structured State Spaces for

Sequences (S4)
1
Continuous Long-Range Discrete
State Space Dependencies Representations
(HiPPO)

S - 7l ?
X IEJT Il C—>Y W
A

Training mode (convolutional)
Inference mode (recurrence)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/ 33
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The S4 SSM

+ Handle long sequences

- Perform poorly on certain tasks that require the ability to focus on

or ignore particular inputs Constant regardless
— Selective copying Ofthﬁ L
— Induction heads ¥ v
A Bx
C
?

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Dynamic Matrices

 Compress data selectively into the state
— Parameters need to be dependent on input

 Mamba makes matrices B, C, and step size A dependent on input
— For every input token, different B and C

— Context-aware
— Smaller A, ignores the word using context more
— Bigger A, focuses on the word more than context

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Dynamic Matrices

Matrix A remains static
— State is static
— The way it is influenced (B and C) is dynamic

Cannot use convolution representation
— Matrices are dynamic
— Convolution representation assumes a fixed kernel

Only the recurrent representation
— Lose the parallelization

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

36
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Mamba: Parallel Scan

* Recurrent computations (scan operation)

B B B B

Sequential computation O(n)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Parallel Scan

e Calculate sequences in parts and iteratively combine

+ Bx, Bx + Bx
:
A A Sweep-down
+ Bx, A Sweep-up
A

Parallel computation O(n/t)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

38
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Mamba: Hardware

 SRAM: small but highly efficient
 DRAM: large but less efficient

e Transfers between SRAM and DRAM are slow

copy copy copy COpY +——gjow!
DRAM SRAM DRAM SRAM DRAM

Initial tensors —» Calculation 1 —» Write results —» Calculation 2 —» Write results

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Hardware

e Limit the number of SRAM-DRAM transfers

» Kernel fusion: continuously perform computations until it’s done

Ccopy copy

YN R

DRAM SRAM SRAM DRAM

Initial tensors —» ! Calculatlon 1T — Calculation 2:—» Write results

-------------------------------------

kernel fusion

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/

40
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Mamba: Hardware

Keep state in
fast SRAM

'

Ttgl

Keep track of parameters
in DRAM

« Intermediate states are not saved but recomputed whenever necessary
- Seems inefficient but much less costly than reading intermediate states
from DRAM

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Selective SSM / S6 Model

A
—_— — ( ;_
— — ( >
o —
-—— 7 > . Y
1
hi_q I
Lo :
Xt _\\ B el : C Yt
\\ tleml—___/ ! S| t
- \ A e -
_____4
=l Project =

Selection Mechanism

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Mamba Block

N A AN

rojection
SSM SSM proj
CO) (0) Sequence
transformation
Conv Conv
| I Nonlinearity

| | \ 74 S [ | WA w— ®  tacatonor

H3 ® Gated MLP — Mamba

Basis of most SSM architectures

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba: Mamba Block

A

SSM SSM
—d o || 8
Conv Conv ‘
I
| | A / \ | A /' \ | y
H3 ® Gated MLP — Mamba

Basis of most SSM architectures

Prevent independent
token calculations

_aation

Nonlinearity
(activation or
multiplication)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Mamba

Training Inference
Fast! Slow...
Transformers (parallelizable) (scales quadratically with sequence length)
Slow... Fast!
RNNs (not parallelizable) (scales linearly with sequence length)
Fast! Fast!
Mamba (parallelizable) (scales linearly with sequence length)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Experiments: Synthetic Tasks
Copying
ipu EEEE Perfectly

g solved by
nput [ 1) 1N [ EEEN Linear Time

Invariant (LTI)
SSMs!|

Solution

Perfectly solved by LTI (e.g. convolutional) models that do not need to look at the actual inputs

46
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Experiments: Synthetic Tasks

Copying
Output EENEE Perfectly
; solved by
nput [ 1) 1N [ EEEN Linear Time
Invariant (LTI)
Solution SS M S |

Perfectly solved by LTI (e.g. convolutional) models that do not need to look at the actual inputs

t
y:K*CB = Zkat—k
k=0

47
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Experiments: Synthetic Tasks

Copying
Output EENEE Perfectly
; solved by
nput [ 1) 1N [ EEEN Linear Time
Invariant (LTI)
Solution SS M S |

Perfectly solved by LTI (e.g. convolutional) models that do not need to look at the actual inputs

t
y:K*CB = Zkat—k
k=0

48
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Experiments: Synthetic Tasks

Selective Copying
Output ano [ ] I Can’t just
X memorize the
timesteps!
Input . . . |.I . . . . P

- Need to actually look at the content of the input sequence
 SSM + Selection (i.e. data-dependent dynamics)

49
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Output

Input

Experiments: Synthetic Tasks

Selective Copying

N

i

MoODEL  ARCH. LAYER  Acc.

S4 No gate 5S4 18.3
- No gate [S6 97.0|

H3 H3 S4 57.0

. . . Hyena  H3 Hyena 30.1
R - H3 1S6 99.7|

- Mamba S4 56.4

. . . . - Mamba Hyena 284
Mamba Mamba [S6 99.8 |

Table 1: (Selective Copying.)
Accuracy for combinations of architectures
and inner sequence layers.

50
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Experiments: Synthetic Tasks

Induction Heads

EOEEEER-- H

« Context-based retrieval and copy
« Also requires data-dependent dynamics
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Experiments: Synthetic Tasks

Induction Heads Extrapolation

1.0 I C— \ X ]
- AN N\ —— MHA-Absolute
’ E \ w=o==_MHA-ROPE
3 0.6 i - MHA-xPos
@~ i —— H3
§ 0.4 é === Hyena
< E == [Mamba
i = Random
0.2 ! .
I N N st Train Length
1
; -
0.0 !
LI | T T T LB | T T T UL | T T T LI | T T 1 LRI |

102 103 10* 10° 10°
Test Sequence Length

Table 2: (Induction Heads.) Models are trained on sequence length 28 =
256, and tested on increasing sequence lengths of 26 = 64 up to 220 =
1048576. Full numbers in Table 11.
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2x10'

Language Modeling: Scaling Law

Scaling Laws on The Pile (Sequence Length 2048)

Perplexity (log scale)
3
1

6x10°

Hyena
RWKV
Transformer
«==s= RetNet
= H3++
w=e==_ Transformer++
== Mamba

" 101 ' T
FLOPs (log scale)

Perplexity (log scale)

2x10'

Scaling Laws on The Pile (Sequence Length 8192)

101 —

6x10°

Hyena
RWKV
Transformer
o= RetNet
== H3++
==e=_Transformer++
= Mamba

i~ : T TEETIL
FLOPs (log scale)

Figure 4: (Scaling Laws.) Models of size ¥ 125M to ~ 1.3B parameters, trained on the Pile. Mamba scales better than all other
attention-free models and is the first to match the performance of a very strong “Transformer++” recipe that has now become standard,
particularly as the sequence length grows.

- Mamba scales better than other attention-free models
- Mamba is the first attention-free approach to match a very strong
Transformer

53
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Language Modeling: Downstream Tasks

Table 3: (Zero-shot Evaluations.) Best results for each size in bold. We compare against open source LMs with various tokenizers,
trained for up to 300B tokens. Pile refers to the validation split, comparing only against models trained on the same dataset and tokenizer
(GPT-NeoX-20B). For each model size, Mamba is best-in-class on every single evaluation result, and generally matches baselines at twice
the model size.

MobpEL ToxkeN. PILE LAMBADA LAMBADA HeiiaSwac PIQA  Arc-E  Arc-C WINOGRANDE  AVERAGE
PPL| PPL] accT Acc T AccT aAccT  accT  acct Acc T
Hybrid H3-130M  GPT2 . 89.48 25.77 31.7 64.2 44.4 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 24.1 51.9 40.6
Mamba-130M NeoX 10.56 16.07 44.3 353 64.5 48.0 24.3 51.9 44.7
Hybrid H3-360M  GPT2 = 12.58 48.0 41.5 68.1 514 24.7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 271 53.5 51.9
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 . 7.50 57.2 48.9 71.1 56.2 25.9 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT i 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 521 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 - 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 = 7.92 55.7 59.7 73.3 65.6 323 61.4 58.0
OPT-2.7B OPT - 5.12 63.6 60.6 74.8 60.8 31.3 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 331 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3
GPT-J-6B GPT2 = 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT = 4.25 67.7 67.2 76.3 65.6 34.9 65.5 62.9
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 61.7

RWKV-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5
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DNA Modeling

Scaling Laws on the Human Genome (HG38)

Pretrain on HG38 human
genome tokens (next-token
prediction)

Size scaling: Mamba improves
smoothly and scales better than
HyenaDNA / Transformer++
Length scaling: Mamba keeps
improving up to ~1M tokens;
HyenaDNA degrades with length

w
o
1

Perplexity
w
o
| |

=== HyenaDNA
=== Mamba

w=e==_ Transformer++

Parameters (log scale)

T
107

Scaling Laws - Sequence Length (HG38)

3.00

2.95

Perplexity
NN
& 3
1 1

2.80

2.75

== HyenaDNA 1.4M
- Mamba 1.4M
Mamba 7M

—
108

—
104

T
10°

Sequence Length

—TT
108

55



[=

BC

€

DNA Modeling

Scaling Laws - Sequence Length (HG38)

3.00 | === HyenaDNA 1.4M
=== Mamba 1.4M

2.95 - Mamba 7M

Perplexity

2.80

L 5 W | LI B |

i T | 2 | | I RN | | T z J T T | G P I T T T ¥
10° 10* 108 106
Sequence Length

Intuition on context length scaling: Without the selection
mechanism, the long input sequence may be very noisy!
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DNA Modeling: Synthetic Species Classification

Finetuning Accuracy (Species DNA Classification)

0.8 | —=— HyenaDNA 1.4M
Mamba 1.4M
0.7
Mamba 7M

= = Random

o
o
1

 Classify between the five
great apes species
(human, chimpanzee,
gorilla, orangutan, i DAL TR
b ono b 0) | Sequence Length

« Shares 99% of their DNA!

Accuracy
o o
£ [3,]

1 1

o ¢
w
1

S
N
1

Figure 6: (Great Apes DNA Classification.) Accuracy after fine-
tuning on sequences of length 21° = 1024 up to 220 = 1048576 using
pretrained models of the same context length. Numerical results in
Table 13.
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Audio Modeling

Baseline: SaShiMi
architecture (U-Net with
alternating S4 and MLP
blocks)

Replace S4+MLP blocks with
Mamba blocks

Dataset: YouTubeMix (4 hours

G Scaling Laws - Sequence Length (YouTubeMix)

1.450
o 1.425
=
0 1400 -
™
8
- 1.375 1
=
0 1.350

1.325

1.300 ~L——

e S4+FFN
Mamba

104 10°
Sequence Length

10°

of solo piano music)
Uses complex number
parameterization

Figure 7: (Audio Pretraining.) Mamba improves performance
over prior state-of-the-art (Sashimi) in autoregressive audio model-
ing, while improving up to minute-long context or million-length
sequences (controlling for computation).
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Audio Generation

Benchmark: SC09, 1-second clips of digits “zero” through “nine”
Small Mamba model outperforms SOTA (and much larger) GAN or
diffusion models

Table 4: (SC09) Automated metrics for unconditional generation on Table 5: (SC09 Model Ablations) Models with 6M parameters. In
a challenging dataset of fixed-length speech clips. (Top to Bottom) SaShiMi’s U-Net backbone, there are 8 center blocks operating on
Autoregressive baselines, non-autoregressive baselines, Mamba, and sequence length 1000, sandwiched on each side by 8 outer blocks on

dataset metrics.

MOoDEL ParaMs NLL| FID| IST MIST AM|
SampleRNN 35.0M 2.042 8.96 1.71 3.02 1.76
WaveNet 4.2M 1.925 5.08 227 5.80 1.47
SaShiMi 5.8M 1.873 1.99 5.13 42.57 0.74
WaveGAN 19.1M 2.03 4.90 36.10 0.80
Diff Wave 24.1M - 1.92 5.26 51.21 0.68
+ SaShiMi 23.0M 1.42 5.94 69.17 0.59
Mamba 6.1M 1.852 094 626 8854 052
Mamba 24.3M 1.860 0.67 7.33 144.9 0.36
Train 0.00 8.56 292.5 0.16
Test 0.02 8.33 257.6 0.19

sequence length 4000, sandwiched by 8 outer blocks on sequence
length 16000 (40 blocks total). The architecture of the 8 center
blocks are ablated independently of the rest. Note that Transformers
(MHA+MLP) were not tested in the more important outer blocks
because of efficiency constraints.

OUTER CENTER NLL|] FD| IS?T MIST AM|]
S4+MLP MHA+MLP 1.859 1.45 5.06 47.03 0.70
S4+MLP S4+MLP 1.867 1.43 5.42 53.54 0.65
S4+MLP Mamba 1.859 1.42 5.71 56.51 0.64
Mamba MHA+MLP 1.850 1.37 5.63 58.23 0.62
Mamba  S4+MLP 1853  1.07 605 7334  0.55
Mamba Mamba 1.852 0.94 6.26 88.54 0.52
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Inference throughput on A100 80GB (prompt length 2048)

UBC
Scan vs Convolution vs Attention time (A100 80GB PCle)
3 —— FlashAttention-2 : .':.n amb: 1’431 B
. ranstormer 1.
1000 | Convolution ’2‘ 15004 === Mamba6.98
1 = Scan (PyTorch) » mmm  Transformer 6.78
% 100 g = Scan (ours) E
E i x oom S
5 o E 1000
E 2
= ]
13 g
_g 500 - i
0.14 "
L 1 1 1 1 1 T T 1 1 I 1
512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1 2

Sequence length

8 16
Batch size

32

Figure 8: (Efficiency Benchmarks.) (Left) Training: our efficient scan is 40X faster than a standard implementation. (Right) Inference:

as a recurrent model, Mamba can achieve 5X higher throughput than Transformers.
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Ablation

Table 6: (Ablations: Architecture and SSM layer.) The Mamba block performs similarly to H3 while being simpler. In the inner layer,
there is little difference among different parameterizations of LTI models, while selective SSMs (S6) provide a large improvement. More
specifically, the S4 (real) variant is S4D-Real and the S4 (complex) variant is S4D-Lin.

MoDEL ARCH. SSM LAYER PERPLEXITY MoODEL ARCH. SSM LAYER PERPLEXITY
Hyena H3 Hyena 10.24 - Mamba Hyena 10.75

H3 H3 S4 (complex) 10.30 - Mamba S4 (complex) 10.54

- H3 S4 (real) 10.34 - Mamba S4 (real) 10.56

- H3 Sé6 8.95 Mamba Mamba Sé6 8.69

Table 7: (Ablations: Selective parameters.) A is the most impor-
tant parameter (Theorem 1), but using multiple selective parameters
together synergizes.

SELECTIVE A SELECTIVE B SELECTIVE C PERPLEXITY

X X X 10.93
X v X 10.15
X X v 9.98
4 X X 9.81
v v v 8.71

Table 8: (Ablations: Parameterization of A.) The more
standard initializations based on S4D-Lin (Gu, Gupta, et al.
2022) perform worse than S4D-Real or a random initialization,
when the SSM is selective.

A, INITIALIZATION FIELD PERPLEXITY
Ap=-1+ni Complex 9.16
A, =-1/2 Real 8.85
Ap,=-(n+1) Real 8.71
A, ~exp(N(0,1)) Real 8.71
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Summary

» State space models (SSMs) become competitive with Transformers once you add
— Selectivity (input-dependent dynamics): choose what to keep/forget based on content
— Implement the computation in a hardware-aware way.

* Possible future directions:
— Have a better theoretical algorithm for the recurrence that does not rely on specific

hardware accelerations
— Mamba 2: More theory; connects SSMs and attentions through a special family of

matrices
— Mamba 3: A more expressive discretization rule; complex-valued state space update;

more efficient decoding
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Space State

A State Space contains the minimum number of variables that fully

describe a system

It is @ way to mathematically represent a problem by defining a
system’s possible states

X

y

.

Exit

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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Selective Scan Algorithm

In a Structured State Space Model (S4), the matrices A, B, and C are independent of the input
since their dimensions N and D are static and do not change.

Matrix A Matrix B Matrix C
How the current state How the input How the current state
evolves over time influences the state translates to the output

Structured

Hidden
State Space N state size N
Model (S4) (N)
D Size of input

vector (D)

Instead, Mamba makes matrices B and C, and even the step size A, dependent on the input by
incorporating the sequence length and batch size of the input:

Step size (A) Matrix B Matrix C
Resolution of the input How the input How the current state
(discretization parameter) influences the state translates to the output
batch
.\size (B)
SSM + Sequence
Selection length (L)
Size of input Hidden state
vector (D) size (N)

[*] Maarten Grootendorst. A Visual Guide to Mamba and State Space Models.https://www.maartengrootendorst.com/blog/mamba/
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