xLSTM: Extended Long Short-Term Memory
EECE 571F

Parshan Javanrood and Zigiao (John) Lin

January 21,2026

University of British Columbia

Extended Long Short-Term Memory (xLSTM)

By the end of this presentation, you'll know. ..

» The evolution from Recurrent Foundations to the Attention era

» How sLSTM uses exponential gating and stabilizers to overcome the sigmoid
bottleneck

» The transition to mLSTM with matrix memory for enhanced storage capacity

» Why removing memory mixing enables Transformer-like parallel training via
parallel scan

» How xLSTM achieves constant inference cost and scales effectively in the LLM
era

Evolution of Sequence Models: A Timeline

Revisiting Recurrence

1980s 1997 2017 2020s 2024

SSMs
RNN LSTM Transformer xLSTM
(e.g., Mamba)
Basic recurrence, Gates solve gradient Attention mech- Linear recurrence, mLSTM (O(dz))
suffers from van- issues, enable anism, full paral- parallel train- + sLSTM (logic,
ishing gradients. long-term memory. lelization, O(N?). ing, O(1) inf.

constant inf.).

~~
Recurrent Foundations

Standard LSTM: Architecture Overview

Standard Forward Pass

put Gate Output Gate

Cell: g = ft . . + .

Cell State from
timestamp = - 1

» CelStaeto . -
w fimestamp =i+ Hidden: hy = or - ht, hy = tanh(© t)

Cell Input: zz =tanh (%), Z = w;xt +rzhi—1 + bz

) Input Gate: iy = o(it), it =w. x¢ + rihi—1 + bj
Hidden sat nput Hlod‘in;:(s't;te N M i
om nd
imesiamp t-1) \ " ——— Y, fimestamp =t + 1 Forget Gate: f; = o(ft), fr = w;rxt + rehe_1 + br
Input Data; Output Gate: o = U(5t), or = w;rxt + rohi—1 + bo
Timestamp = t

Limitation: h;_; dependency prevents parallelization.
Figure 1: Standard LSTM Cell

Image Credit to:
https://medium.com/analytics-vidhya/Istms-explained-a-complete-
technically-accurate-conceptual-guide-with-keras-2a650327e8f2

The Shift: From Recurrence to Attention

Limitations of LSTMs vs. The Rise of Attention

Traditional LSTM Constraints The Transformer Paradigm

e Scalar Compression: Information is forced e Memory as Indexing: Stores history as
into a fixed-size vector; O(d) capacity. Key-Value pairs; no initial compression.

e Saturated Gating: Sigmoid gates (0 — 1) e Dynamic Routing: Softmax attention
inhibit significant memory revision. allows "sharp” focus on any token.

e Sequential Flow: O(N) dependency e Full Parallelism: All tokens interact
prevents GPU parallelization. simultaneously during training.

e Retrieval Failure: Struggles with e Global Context: Direct point-to-point
exact-match " Nearest Neighbor Search.” connections regardless of distance.

J \

Limitation: Inability to Revise Storage Decisions

The Sigmoid Bottleneck in LSTM Memory Management

Nearest Neighbor Search Failure

v1 (Stored) vy (Better Match)

The Core Issue D Ty

LSTMs struggle to overwrite or update stored values > Time (t)

when more relevant information appears later in a

The cell state is "saturated” by
scguence: vi. The model lacks the dynamic
range to fully "switch” to v.

Case Study: Nearest Neighbor Search
e Initial Storage: The model encounters vector vy (similar to a
reference). The input gate stores it in the cell state.
e New Information: A "more similar” vector v, appears later in the
sequence.

e Revision Failure: Due to the squashing effect of Sigmoid gates,
the LSTM cannot significantly "suppress” v; to prioritize v5.

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key
Value

Prediction

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key 2
Value 12

Prediction 12

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key 2 15

Value 12 17

Prediction 12 12

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key 2 15 4

Value 12 17 14

Prediction 12 12 14

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key 2 15 4 55

Value 12 17 14 8

Prediction 12 12 14 8

Limitations of the LSTM

Nearest Neighbor Search
Problem:

e Goal: “Predict the value of
the closest key to the query”

Query: 6
Key 2 15 4 55 9

Value 12 17 14 &8 11

Prediction 12 12 14 8 8

Limitations of the LSTM

Nearest Neighbor Search

Problem: Figure 2: Mean Squared Error
e Goal: “Predict the value of LSTM
the closest key to the query” 0.157 M xLSTM
M Transformer
Query: 6 0.104 |

Key 2 15 4 55 9
0.054

Value 12 17 14 &8 11

Prediction 12 12 14 8 8 MSE

Limitation: Limited Storage Capacity

The Compression Bottleneck of Scalar Cell States

Scalar vs. Matrix Capacity

The Core Issue Rich Input Data

Information must be compressed into scalar cell
states (ct S R), which severely limits the fidelity of
the stored memory. Cmpression

ct (Scalar Vector)

Consequence: Rare Token Prediction Bottleneck
e High Compression: Multi-dimensional features are forced into a
single vector space, leading to " cluttered” memory.

e Information Loss: Specific details of less frequent tokens are possylRetiieval

"washed out” by dominant statistical patterns. Rare tokens are lost

A-nq q " among common patterns.
e Failure: The model cannot distinguish or recall specific, rare

information because the storage capacity (O(d)) is insufficient.

Limitation: Lack of Parallelizability

The Sequential Bottleneck of Memory Mixing

The Sequential Chain (O(N))

The Core Issue

LSTMs rely on Memory Mixing (hidden-to-hidden
connections), where the current state h; strictly de- | - - - - - o oo oo > Time

pends on the previous state h;_j. No Parallelism:

Each step must finish
before the next begins.

Impact: Sequential Training

e Recurrence Constraint: Temporal dependencies force the model
to process tokens one-by-one (O(N) complexity).

e Hardware Inefficiency: Unlike Transformers, it is impossible to
parallelize training across the time dimension.

e Result: Significantly slower training speeds on modern GPUs,
creating a massive "compute gap” compared to attention-based
models. 9

Introducing xLSTM: Extended LSTM

From LSTM to xLSTM: Three Pillars

» sLSTM (Scalar LSTM): Introduces Exponential
Gating to allow high-dynamic memory revision
(replaces Sigmoid).

» mLSTM (Matrix LSTM): Replaces scalar cells with
Matrix Memory (O(d?)), drastically increasing storage
capacity.

» Parallelization: By removing memory mixing in
mLSTM, the model enables Parallel Scan for hardware
efficiency.

The xLSTM Family
xLSTM
sLSTM mLSTM
Revision Capacity
Logic Parallelism
\

Matrix Memory (d X d)

[The Result: xLSTM scales like a Transformer while maintaining the constant inference memory of an LSTM.

Re-designing the LSTM Forward Pass

Standard LSTM

c = fr 1 + it z

ht = o -i;t,l;t =tanh(¢)

z¢ =tanh(Z), Z: = w;—xt +rzhi—1+ b,
e =o(ir), ir = w,-Txt + rihi—1 + b;

f :cr(ft), ft:w;—xt—l-rfht_l—&—bf

s\ o T
or = 0(6t), 6t =W, Xt + roht—1 + bo

1

2
®3)

sLSTM (Proposed)

Limitation: Sigmoid € [0,1] cannot amplify sig-

nals. tanh limits the dynamic range of memory.

c = f g1 + it z (7)
ng = fi ng_1 + i (8)
h: = o -i;t,/;t: ct/ne (9)
2z =tanh(%), % =w/xc +rht_1+b, (10)

ie = exp (it), it = w] x¢ + rihe_1 + b; (11)
fo = exp (f;) OR o(f), fr = w/xe + rehe—1 + br
(12)

ot = U(at), 5!‘ = W;[-Xt + roht_l + bo (13)

Innovation: exp allows amplification. Normalizer

ny ensures stability via division.

11

sLSTM: Numerical Stability via Stabilizer m,

Problem: exp(-) gates = ¢, ns grow exponentially = Overflow.

Stable Implementation

i Rescale gates by my:
The Solution: m¢

il = exp(;:t — my)

Track the running maximum of log-gates: f/ = exp(fi + mi_1 — my)

me = max(f; + my_1, it)

(Similar to Log-Sum-Exp trick) Updated States:

! =/
¢t =flce—1+ izt

! A
ne=fine_1+i;

Final Output: h; = o, - &

ne
(Division by n¢ normalizes h¢, keeping it bounded.)

12

sLSTM Innovation: Sigmoid vs. Exponential Gating

Why Switch to Exp?

E . .
tpchoniCompaitag Gating Mathematical Logic

Traditional (o) Cannot increase state mag-
nitude beyond the previous
step.

exp(x) € (0, 00) SLSTM (exp) Enables Signal Amplifica-

77777777 1=0 7 tion, allowing the model to
‘/ a(x) € (0,1) "revise” history.

Stability Handled by m: and n:
to prevent the "Exploding

Exp” problem.
e Sigmoid: Squashing mechanism.

e Exponential: Amplification mechanism.
Key Takeaway: Exponential gating transforms the LSTM from a simple
" forget/remember” unit into a powerful "search/update” mechanism.

13

ing & Headwise Architecture

From Scalar to Vector Pre-activations

1. Standard Scalar Recurrence:
Z = szxt +rzhi—1 + bz

2. New Vectorized Formulation:
Z; = Wyxt + Rzhi_1 + b,
it, fr, 0+ follow the same vector pattern.

(Classic mixing)

e Memory Mixing: The R;h;_; term allows the model
to correlate all features of the previous state.

e High Dynamic Range: Combined with exponential
gating, this enables "searching” and "updating”

discrete states.

dhead

dxd

Headwise Memory Mixing:
To balance complexity, R is restricted to a block-
diagonal structure.
e Prevents full d? compute.
e Each head performs independent internal
mixing.

Note: m: and n; stability logic still applies to the resulting vector activations to prevent exploding exponents.

14

mLSTM: Extending to Matrix Memory

sLSTM (Scalar Memory) mLSTM (Matrix Memory)

Cel: ¢¢: = f ct—1 + it z (7) Ce = fr Ceoq + ir ek (14)
Normalizer: n: = fi ni—1 + it (8) ng = ft ng_1 + ir ke (15)
Hidden: ht = Ot (Ct / nt) (9) ht = Ot @ﬁt, Flt = tht /max{| n;rqt |,1
Cell input: z: = tanh(w, x; +...) (10) (16)
qt, ktyvt = Wq,k,vxt + bq,k,v (17)
Gating: ir, fr =exp(...) (11-12) ie, fo =exp(...), i, e =wlpxe+ b (18)
Output: o = O’(. 3) (13) o = 0’(6}),6} = WoXt + bo) (19)
Constraint: Scalar memory has limited capacity. Innovation: Matrix memory C; € RI*9 stores
Sequential hy_1 prevents parallelization. key-value pairs. Removed hidden-to-hidden
recurrent connection (h;_; to gates) to enable

Parallel Scan. 15

mLSTM: The Matrix Memory & Covariance Update

Matrix Update Visualization

i The Covariance Update Rule

4
Update: C; = fi Cio1 + ir vk (14)

Ci1 |+ vtktT = (o
Normalizer: ng = fy ne—1 + i ke (15)
T

vt
Covariance Term Elk¢], E[v¢] = 0 (via LayerNorm applied before projecting inputs), C; ef-
fectively tracks the Covariance E[va] between values and keys.
e Capacity: Compresses history into R9*9 dxd
0 Efficiency: Fixed-size R?X¢ memory == O(1) inference memory, unlike
matrix. Transformers’ O(L) KV cache.

e Retrieval: Query q; performs a linear

projection on C.

16

Comparison: Standard LSTM vs. sLSTM vs. mLSTM

Feature Standard LSTM sLSTM mLSTM
Memory Scalar ¢¢ Scalar ¢¢ Matrix C; € RIxd
Gating Sigmoid (o) Exponential (exp) Exponential (exp)
Stability None (Bounded o) Normalizer n¢, m; Normalizer n;
Mixing Hidden Mixing (h¢—1) | Hidden Mixing (h:—1) No Mixing

Computation

Sequential

Sequential

Parallelizable

Inference

O(1) per step

O(1) per step

O(1) per step

Summary of Evolution:

e Standard — sLSTM: Switched to exponential gating for better signal amplification, adding a normalizer for stability.

e sLSTM — mLSTM: Replaced scalar memory with a covariance-based matrix memory and removed hidden-to-hidden dependencies to enable

parallel training.

17

Comparison: mLSTM vs. Transformer

Softmax vs. Linear Attention

LR S U Mechanism Search vs. Summary

Softmax Attn | Global Search: Sharp fo-
(Transformer) cus on specific tokens via
Softmax(QK). Precise but
O(N) search.

N x d |—> O(N) growth

Transformer (KV Cache)

d x d|—3 Constant O(1) Linear Attn | State Tracking: Updates

(mLSTM) C: = iCy_1+irvek] . Build
mLSTM (Ct) summary via exp-gating.
Retrieval Transformer: O(N) needle-
e Transformer: Memory scales linearly with in-haystack.
sequence length N. Struggles with long mLSTM: O(1) pattern
tracking.

sequences.

e mLSTM: Compressed history into fixed d x d

matrix. Constant memory regardless of /. Core Logic: While Transformers "look back” at raw data, mLSTM
maintains a compressed mental model, using f; and i to weigh new vs.
old correlations.

18

xLSTM: Residual Block Architecture

e Goal: "non-linearly summarize the past in a high-dimensional space to better

separate different histories or contexts.”

The Backbone: Pre-LayerNorm Residual, found in Transformers and SSMs.

Anatomy of a Block: Each residual block (x;11 = x; + Block(x;)) contains:
1. Layer Normalization: Applied to input (Pre-LN).
2. xLSTM Core: Either an sLSTM or mLSTM module.
3. Projections: Up/Down projections integrated directly.
4. Residual Connection: Stabilizes gradient flow.

Unified Design: Enables mixing sLSTM and mLSTM in the same stack.

19

xLSTM: Block Variants and Projection Strategies

sLSTM Block: Post Up-Projection, similar mLSTM Block: Pre Up-Projection, similar

to Transformer. to SSM/Mamba.

e Rationale: Tracks state logic in lower e Rationale: High-dim inputs increase
dimensions before capacity-heavy key-value retrieval capacity in matrix
non-linearities. memory.

Figure 3: sLSTM Block Figure 4: mLSTM Block

20

xLSTM: Stacking Strategy and xLSTM[a:b] Notation

Architecture: Stacking blocks, balancing Parallel Capacity with Sequential Reasoning.

LSTM

Memory Cells
- Constant Error Carousel
- Sigmoid Gating
- Recurrent Inference
- Recurrent Training
e =fica+ iz
he = ot y(e)

G

[m}

Memory Cells
sLSTM

+ Exponential Gating
L + New Memory Mixing

XLSTM Blocks xLSTM

mLSTM
+ Exponential Gating
= + Matrix Memory
+ Parallel Training
+ Covariance Update Rule

aes

F

Figure 5: xLSTM Architecture

Notation xLSTM[a:b]: Defines the ratio of block types in the residual stack. Number
of mLSTM blocks a vs sLSTM blocks b 1

xLSTM: Memory & Complexity

e Memory:
e mLSTM Block: Massive Matrix Memory O(d?) capacity, highly parallelizable.
e sLSTM Block: Sequential and slow, but offers memory mixing.
e Algorithmic Complexity:
e Linear Scaling: O(N) with sequence length (vs. Transformer O(N?)).
e Constant Memory: State is compressed into fixed-size matrices regardless of

context length.
Cache Size = O(1) (No growing KV-cache)

22

Experiments (What they validate)

e Goal: validate two core claims of xLSTM:

1. State tracking limitations of LSTMs are fixed via sSLSTM

2. Storage capacity limitations of LSTMs are fixed via mLSTM
e Plus: demonstrate effective scaling to LLMs (quality, extrapolation, efficiency)
e Experiments

1. Synthetic Tasks: Formal Languages & State Tracking

2. Multi-Query Associative Recall(MQAR) & Nearest Neighbor Search
3. Large-Scale Language Modeling

4. Scaling Laws

5. Performance & Throughput Analysis

e Baselines: LLaMa(Transformer), Mamba(SSM), RWKV(RNN)

23

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Setup

e Tasks from Chomsky hierarchy: Regular, Context-Free, Context-Sensitive

e Logic/state task example: Parity (even/odd sum over a sequence)
Measures

e Ability to track discrete state over long horizons

e Requires strong recurrent updates and memory mixing (state interactions)

24

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Deterministic

Context Sensitive Context Free Regular
Mod Mod
Missing | A ; . Solve . . Majority
" ithmeti : : Arithmeti . o
Bucket Sort Duplicate (:‘Eu:\::} c Equation | Cycle Nav Even Pairs (wr,"o B,EY::;I)C Parity Majority Count

Llama

, 008 0.02 0.02 0.04 0 0.03 0.03 037 013
+ oo oo a0 oot o o Foor Foon by
X 0

0.15 0.04 0.05 0.05 0.13 0.69 0.45

ion. 013 003 0.03 0.03 0.05 051 0.04 0.05 036 012
Retentlon +001 +00 +00 +00 +001 +0.07 +00 +001 +00 +001
Hyena- 03 0.06 0.05 0.02 0.06 0.04 0.04 036 018
Lo02 so0 Soo £o0 Loor Loo £o0 Loor Lo
054 021 0.06 0.07 013 0.07 0.06 063 013
rwivs NSRRI 020 | 0% o | ok oo I
_ 049 0.15 0.08 0.26 0.15 0.06 034
rwiv-s SO
I 0% 023 0.09 031 0.16 022 024
rwiv-s RN 022
LSTM [y 0.15 05 1.0 0.27
(Block) £00 £00 005 + £00 00
94 02 038 033
. 023 055 022
xLSTM[0:1] soo1 £ ey
: 033 0.03 0.03 046
xLSTM[L.0 som Zoo oot +00
. 7 02 0.15 0.24 05

Figure 6: Test of xLSTM's exponential gating with memory mixing

23

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Results

e Strongly outperforms Transformers and SSMs (e.g., Mamba)
e Transformers/Mamba often fail on hard tracking (e.g., Parity: accuracy < 0.5)

Significance

e sLSTM (scalar LSTM + exponential gating) excels at discrete state
tracking/logic

e Highlights a weakness of many modern “linear” sequence models on stateful tasks

26

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Setup

e “Needle-in-a-haystack”: store many key-value pairs in a sequence

e Later: retrieve correct value for a queried key (multi-query)
Measures

e Associative memory capacity

e Ability to revise stored info (update value when better evidence arrives)

27

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

=@— Llama =@ Mamba —=8— RWKV-5 =@ RWKV-6 =@= xLSTMI1:0] =@— xLSTM[1:1]

KV Pairs — 48 KV Pairs = 96 KV Pairs = 256
1.00
0.75
>
&
5 0.50
S
<
0.25
0.00
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Model Dim Model Dim Model Dim

Figure 7: Test of memory capacities of different models at the Multi-Query Associative Recall task with context length 2048.

28

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Results

e mLSTM performs comparably to Transformers
e Outperforms traditional LSTMs and some SSM baselines

e Matrix Memory stores far more information than scalar LSTM memory
Significance

e Validates that Matrix Memory fixes LSTM storage capacity limits

e mMLSTM behaves like a recurrent key-value mechanism

29

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Setup

e Train on SlimPajama (cleaned RedPajama; 300B tokens)
e Model sizes: 125M up to 1.3B parameters

Measures

e Validation perplexity for next token prediction and on downstream tasks that
measure common sense reasoning.

30

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Model #Params SlimPajama LAMBADA LAMBADA HellaSwag PIQA ARC-E ARC-C WinoGrande ~ Average
M (300B)ppl | ppl ace acct acet acet acct ace t ace T
RWKV-4 169.4 16.66 54.72 23.77 3403 66.00 47.94 5091 4112
s Llama 162.2 15.89 39.21 31.54 34.09 6545 4533 50.67 4178
7 Mamba 167.8 15.08 27.76 34.14 3647 6676 48.86 5114 43.63
= XLSTM[I:0] 163.8 14.63 25.98 36.52 3674 6561 4781 3 5185 43.89
XLSTM[7:1] 1637 14.60 26.59 36.08 3675 66.87 4832 25.26 5170 44.16
RWKV-4 430.5 12.62 21.57 36.62 4247 69.42 5122 46.60
s Llama 406.6 12.19 15.73 44.19 4445 69.15 5359 4832
£ Mamba 423.1 11.64 12.83 46.24 4755 69.70 5430 50.14
@ XLSTM[1:0] 409.3 1131 11.49 49.33 48.06 69.59 5438 50.62
XLSTM[7:1] ~ 408.4 11.37 12.11 4174 47.89 7116 5328 5075
RWKV-4 891.0 10.55 10.98 47.43 5229 72.69 5541 5258
s Llama 834.1 10.60 9.90 51.41 5216 7095 56.67 5274
S Mamba 870.5 10.24 9.24 50.84 5397 71.16 5699 53.86
= XLSTM[1:0] ~ 840.4 9.86 8.09 54.78 5572 72.69 5817 56.12
XLSTM[7:1] 839.7 9.91 8.07 5527 56.12 7274 5643 55.26
RWKV-4 1515.2 9.83 9.84 49.78 5620 74.70 5556 54.78
o Llama 1420.4 9.44 7.23 57.81 73.12 59.04 56.99
@ Mamba 1475.3 9.14 7.41 60.45 7443 60.14 5841
— XLSTM[1:0] 1422.6 8.89 6.86 60.91 74.59 60.62 58.48
XLSTM(7:1] 1420.1 9.00 7.04 60.26 74.92 5927 5810

Figure 8: Validation set perplexity at next token prediction and on downstream tasks

31

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Results

e xLSTM achieves lower perplexity than Mamba and RWKV across sizes
e Competitive with LLaMA (Transformer), matching or slightly beating it

Significance

e Core “LLM-era” evidence: xXLSTM scales effectively

e Unlike classic LSTMs that saturate, xLSTM shows robust scaling behavior

32

Experiment 4. Scaling Laws

Setup

e Train xLSTM models from 125M to 1.3B parameters
e Dataset: SlimPajama (300B tokens)
e Baselines: Mamba, RWKYV, LLaMA (Transformer)

Measures

e Validation Perplexity (next-token prediction quality) as model size and compute
increases

83

Experiment 4. Scaling Laws

17 4
—&— Llama

16 7 =@ Mamba

15 4 =—@— RWKV-4
- =0 xLSTM[7:1]
£ 147 —e— xLSTM[1:0]
@
2 13 4
[
o
E 12
=]
[
2 11 4
T
>

10 H

300B Tokens
9 -
T T T T T B T : T T
0.2 0.4 1.0 1.4
Number of Parameters x10°

Figure 9: Scaling laws. Next token prediction perplexity on the SlimPajama validation set

34

Experiment 4. Scaling Laws: Measures & Goal

Results

e xLSTM outperforms Mamba and RWKYV at all tested scales

e Lies on the Pareto frontier (best quality for a given compute budget)
Significance

e Shows xLSTM does not saturate like traditional LSTMs
e Demonstrates Transformer-level scaling behavior

e Makes xLSTM viable for large-scale LLM architecture

85

Experiment 5. Performance & Throughput Analysis

Setup
e Compare inference speed latency and throughput
Measures

o Computational efficiency and practicality at scale

36

Experiment 5. Performance & Throughput Analysis

20T e Liama B Llama FP16 (prefill 256)
—o— Mamba 30000 { M Llama FP16 (prefill 2048)

1000 1" -e= RWKV-4 B XLSTM[1:0] FP16 (t.c)
—o— RWKV-4 (torch.compile) 25000 { W Mamba FP16

800 | =e= xLSTM[L:0]
—e— xLSTMI[1:0] (torch.compile) -8 20000

600 4 —®— xLSTM[7:1]
+-@-+ xLSTMI7:1] (torch.compile)

Ti

400 A

200

Out of Memory

2048 4096 8192 16384 8 16 32 64 128 256 512 1024 2048
Generation Length Batch Size

Figure 10: Inference Generative Speed. Left: Generation times, Right: Token throughput

37

Experiment 5. Performance & Throughput Analysis

Inference

e mLSTM: linear generation time O(N)
e No growing KV cache with sequence length = higher throughput/batch sizes

Significance

e Efficient constant-memory inference

38

Overall Conclusion from Section 4

e sLSTM: strong discrete state tracking and logic capability
e mLSTM: high associative memory capacity (Transformer-like retrieval)

e xLSTM: competitive LLM perplexity, adhering to the Scaling Law, and strong
throughput

39

Limitations and Conclusion

Parallelizability sLSTM retains hidden-to-hidden recurrent connections, preventing a fully parallel
implementation. Even with CUDA optimizations, it remains <2x slower than mLSTM.

CUDA Efficiency mLSTM suffers from unoptimized CUDA kernels, making it 4x slower than
FlashAttention implementations currently.

Memory Cap While Matrix Memory (d?) is independent of sequence length (), extreme increases in
N may eventually overload memory. Note: Not an issue for contexts up to 16k tokens.

Research Conclusion

Can xLSTM overcome the limitations of standard LSTMs?

"At least as far as current technologies like Transformers or State Space Models.”

40

Future (Current) Work

e xLSTM Scaling Laws: Competitive Performance with Linear
Time-Complexity (October 2025)

Shows that xLSTM scales effectively to large models while maintaining linear time
complexity, offering a more efficient alternative to Transformers for large-scale
training.

e xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference (March 2025)
This work releases and evaluates a 7-billion parameter xLSTM model,
demonstrating it matches the performance of leading Transformer LLMs (like
Llama) of the same size.

e Vision-LSTM: xLSTM as Generic Vision Backbone (June 2024)

XLSTM architecture for computer vision tasks, introducing a " Vision-LSTM"
(ViL) backbone that processes image patches as sequences.

41

Our Review

e Strengths
e Clear Problem Description and Design Rationale
e Comprehensive Experiments
e Competitive Large-Scale Results
e Overall the paper delivers what authors promise
e ldeas for Future Improvements
e Training efficiency and lack of parallelizability
e Matrix Memory Computational Cost Underexplored
e O(d?) matrix operations per timestep, FLOPs/token experiments
e Memory Saturation Risk Not Fully Addressed
e Authors acknowledge that matrix memory may saturate as sequence length grows but
only test up to 16k context. Does this scale with the number of parameters/compute?
e model is relatively small (from 250M to 1.3B). Not sure the performance once the
model grows big (like 70B+)

42

Thank you!
Questions?

References

[1] Beck, M., et al. (2024). xLSTM: Extended Long Short-Term Memory. arXiv preprint arXiv:2405.04517.

[2] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),
1735-1780.

[3] Vaswani, A., et al. (2017). Attention Is All You Need. Advances in Neural Information Processing
Systems (NeurlPS).

[4] Gu, A., & Dao, T. (2023). Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv
preprint arXiv:2312.00752.

[5] Katharopoulos, A., et al. (2020). Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention. ICML.

Note: Full bibliography and additional technical details can be found in the xLSTM technical report (Beck et al., 2024)

43

Appendix A: Mixing Mechanisms

sLSTM: Memory Mixing mLSTM: No Mixing
e Good for State Tracking. e Good for Capacity & Speed.
e Past info mixed into current gates: e Gate calculation independent of

- previous hidden state:
Zy = W, Xt + rzht_]_ + bz

it = W,-TXt + b,’
e r;hy_1: Learned weight matrix mixing

past history. e No rih;_1 term.

44

Appendix B: mLSTM Structure: Gates & Transformer Analogies

Component mLSTM Formulation | Transformer Analogy
Key (k) ﬁwkxt + by Memory Address / Routing
Query (q:) W x; + b, Retrieval Signal

Value (v;) W, x; + b, Content Information

Gate Type Activation Function / Effect

Input Gate (i) | exp(i) "Write” to Matrix Memory
Forget Gate (f;) | exp(f;) Decay old correlation

Linear Attention Connection: In mLSTM, the exponential gates act as a dynamic normalization mechanism. When the forget gate f; = 1 and
the input gate is active, the matrix memory C¢ = > irv, k: mathematically mimics Linear Attention.

45

Appendix: Transformer Multi-Head Structure

Key Concept: Instead of a single attention
function, we perform H parallel projections.

Input Q, K, V

Linear Layers (x H)

Benefit for sLSTM:

e Mimics Transformer's capacity.

l Scaled Dot-Product Attention ‘

e Stable training via head-wise

normalization.

e Efficient GPU utilization.

46

Appendix: From Single-head to Multi-head sLSTM

Why Multi-head?

o [FegiiTE Diversity: e Feature Standard LSTM sLSTM (Multi-head
tracks different aspects of the Ceies gk 6,9 % (6 59e)
sequence. Cell State Scalar/Vector ¢; | Parallel heads {cgl) ...C

e Parallelism: Independent heads Dependency Sequential h;—1 Head-wise parallel
allow for efficient sub-dimension Normalization None Exponential (exp) gat
processing. Head Concatenation

e Scaling: Similar to Transformer's
¢ he = Concat(hgl) h£2)7 . th))WO

)

MHSA, it enhances capacity.

Note: Total hidden dimension d is split into H heads, each with
dp = d/H.

47

