
xLSTM: Extended Long Short-Term Memory

EECE 571F

Parshan Javanrood and Ziqiao (John) Lin

January 21,2026

University of British Columbia

1

Extended Long Short-Term Memory (xLSTM)

By the end of this presentation, you’ll know. . .

▶ The evolution from Recurrent Foundations to the Attention era

▶ How sLSTM uses exponential gating and stabilizers to overcome the sigmoid

bottleneck

▶ The transition to mLSTM with matrix memory for enhanced storage capacity

▶ Why removing memory mixing enables Transformer-like parallel training via

parallel scan

▶ How xLSTM achieves constant inference cost and scales effectively in the LLM

era

2

Evolution of Sequence Models: A Timeline

TimeRNN

1980s

Basic recurrence,

suffers from van-

ishing gradients.

LSTM

1997

Gates solve gradient

issues, enable

long-term memory.

Transformer

2017

Attention mech-

anism, full paral-

lelization, O(N2).

SSMs

(e.g., Mamba)

2020s

Linear recurrence,

parallel train-

ing, O(1) inf.

xLSTM

2024

mLSTM (O(d2))

+ sLSTM (logic,

constant inf.).

Revisiting Recurrence

Recurrent Foundations

3

Standard LSTM: Architecture Overview

Figure 1: Standard LSTM Cell

Image Credit to:

https://medium.com/analytics-vidhya/lstms-explained-a-complete-

technically-accurate-conceptual-guide-with-keras-2a650327e8f2

Standard Forward Pass

Cell: ct = ft c
t−1

+ it z
t

Hidden: ht = ot · h̃t , h̃t = tanh(c
t
)

Cell Input: zt = tanh (z̃t), z̃t = w⊤
z xt + rzht−1 + bz

Input Gate: it = σ(ĩt), ĩt = w⊤
i xt + riht−1 + bi

Forget Gate: ft = σ(f̃t), f̃t = w⊤
f xt + rf ht−1 + bf

Output Gate: ot = σ(õt), õt = w⊤
o xt + roht−1 + bo

Limitation: ht−1 dependency prevents parallelization.

4

The Shift: From Recurrence to Attention

Limitations of LSTMs vs. The Rise of Attention

Traditional LSTM Constraints

• Scalar Compression: Information is forced

into a fixed-size vector; O(d) capacity.

• Saturated Gating: Sigmoid gates (0 → 1)

inhibit significant memory revision.

• Sequential Flow: O(N) dependency

prevents GPU parallelization.

• Retrieval Failure: Struggles with

exact-match ”Nearest Neighbor Search.”

The Transformer Paradigm

• Memory as Indexing: Stores history as

Key-Value pairs; no initial compression.

• Dynamic Routing: Softmax attention

allows ”sharp” focus on any token.

• Full Parallelism: All tokens interact

simultaneously during training.

• Global Context: Direct point-to-point

connections regardless of distance.

5

Limitation: Inability to Revise Storage Decisions

The Sigmoid Bottleneck in LSTM Memory Management

The Core Issue

LSTMs struggle to overwrite or update stored values

when more relevant information appears later in a

sequence.

Case Study: Nearest Neighbor Search
• Initial Storage: The model encounters vector v1 (similar to a

reference). The input gate stores it in the cell state.

• New Information: A ”more similar” vector v2 appears later in the

sequence.

• Revision Failure: Due to the squashing effect of Sigmoid gates,

the LSTM cannot significantly ”suppress” v1 to prioritize v2.

Nearest Neighbor Search Failure

Time (t)

v1 (Stored)

...

v2 (Better Match)

×

The cell state is ”saturated” by

v1. The model lacks the dynamic

range to fully ”switch” to v2.

Key Insight: Sigmoid-based gating is too restrictive for high-dynamic memory updates, leading to

retrieval errors.

6

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key

2 1.5 4 5.5 9

Value

12 17 14 8 11

Prediction

12 12 14 8 8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2

1.5 4 5.5 9

Value 12

17 14 8 11

Prediction 12

12 14 8 8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2 1.5

4 5.5 9

Value 12 17

14 8 11

Prediction 12 12

14 8 8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2 1.5 4

5.5 9

Value 12 17 14

8 11

Prediction 12 12 14

8 8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2 1.5 4 5.5

9

Value 12 17 14 8

11

Prediction 12 12 14 8

8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2 1.5 4 5.5 9

Value 12 17 14 8 11

Prediction 12 12 14 8 8

Figure 2: Mean Squared Error

7

Limitations of the LSTM

Nearest Neighbor Search

Problem:

• Goal: “Predict the value of

the closest key to the query”

Query: 6

Key 2 1.5 4 5.5 9

Value 12 17 14 8 11

Prediction 12 12 14 8 8

Figure 2: Mean Squared Error

7

Limitation: Limited Storage Capacity

The Compression Bottleneck of Scalar Cell States

The Core Issue

Information must be compressed into scalar cell

states (ct ∈ R), which severely limits the fidelity of

the stored memory.

Consequence: Rare Token Prediction
• High Compression: Multi-dimensional features are forced into a

single vector space, leading to ”cluttered” memory.

• Information Loss: Specific details of less frequent tokens are

”washed out” by dominant statistical patterns.

• Failure: The model cannot distinguish or recall specific, rare

information because the storage capacity (O(d)) is insufficient.

Scalar vs. Matrix Capacity

Rich Input Data

Compression

ct (Scalar Vector)

Bottleneck

Lossy Retrieval

Rare tokens are lost

among common patterns.

Key Insight: Vector-based memory (O(d)) is too small to store the complex associative data required

for modern LLMs.

8

Limitation: Lack of Parallelizability

The Sequential Bottleneck of Memory Mixing

The Core Issue

LSTMs rely on Memory Mixing (hidden-to-hidden

connections), where the current state ht strictly de-

pends on the previous state ht−1.

Impact: Sequential Training
• Recurrence Constraint: Temporal dependencies force the model

to process tokens one-by-one (O(N) complexity).

• Hardware Inefficiency: Unlike Transformers, it is impossible to

parallelize training across the time dimension.

• Result: Significantly slower training speeds on modern GPUs,

creating a massive ”compute gap” compared to attention-based

models.

The Sequential Chain (O(N))

ht−1 ht ht+1

Wait Wait

Time

No Parallelism:

Each step must finish

before the next begins.

Key Insight: The very mechanism that enables LSTM’s logic (Memory Mixing) is the same one that

prevents it from scaling on modern hardware.

9

Introducing xLSTM: Extended LSTM

From LSTM to xLSTM: Three Pillars

▶ sLSTM (Scalar LSTM): Introduces Exponential

Gating to allow high-dynamic memory revision

(replaces Sigmoid).

▶ mLSTM (Matrix LSTM): Replaces scalar cells with

Matrix Memory (O(d2)), drastically increasing storage

capacity.

▶ Parallelization: By removing memory mixing in

mLSTM, the model enables Parallel Scan for hardware

efficiency.

The xLSTM Family

xLSTM

sLSTM mLSTM

Revision

Logic

Capacity

Parallelism

Matrix Memory (d × d)

The Result: xLSTM scales like a Transformer while maintaining the constant inference memory of an LSTM. 10

sLSTM: Re-designing the LSTM Forward Pass

Standard LSTM

ct = ft ct−1 + it zt (1)

ht = ot · h̃t , h̃t = tanh(ct) (2)

zt = tanh(z̃t), z̃t = wT
z xt + rzht−1 + bz (3)

it = σ(ĩt), ĩt = wT
i xt + riht−1 + bi (4)

ft = σ(f̃t), f̃t = wT
f xt + rf ht−1 + bf (5)

ot = σ(õt), õt = wT
o xt + roht−1 + bo (6)

Limitation: Sigmoid ∈ [0, 1] cannot amplify sig-

nals. tanh limits the dynamic range of memory.

sLSTM (Proposed)

ct = ft ct−1 + it zt (7)

nt = ft nt−1 + it (8)

ht = ot · h̃t , h̃t = ct/nt (9)

zt = tanh(z̃t), z̃t = wT
z xt + rzht−1 + bz (10)

it = exp (ĩt), ĩt = wT
i xt + riht−1 + bi (11)

ft = exp (f̃t) OR σ(f̃t), f̃t = wT
f xt + rf ht−1 + bf

(12)

ot = σ(õt), õt = wT
o xt + roht−1 + bo (13)

Innovation: exp allows amplification. Normalizer

nt ensures stability via division. 11

sLSTM: Numerical Stability via Stabilizer mt

Problem: exp(·) gates =⇒ ct , nt grow exponentially =⇒ Overflow.

The Solution: mt

Track the running maximum of log-gates:

mt = max(f̃t +mt−1, ĩt)

(Similar to Log-Sum-Exp trick)

=⇒

Stable Implementation

Rescale gates by mt :

i ′t = exp(ĩt −mt)

f ′t = exp(f̃t +mt−1 −mt)

Updated States:

ct = f ′t ct−1 + i ′t zt
nt = f ′t nt−1 + i ′t

Final Output: ht = ot · ct
nt

(Division by nt normalizes ht , keeping it bounded.)

12

sLSTM Innovation: Sigmoid vs. Exponential Gating

Function Comparison

x

y

σ(x) ∈ (0, 1)

exp(x) ∈ (0,∞)

1.0

• Sigmoid: Squashing mechanism.

• Exponential: Amplification mechanism.

Why Switch to Exp?

Gating Mathematical Logic

Traditional (σ) Cannot increase state mag-

nitude beyond the previous

step.

sLSTM (exp) Enables Signal Amplifica-

tion, allowing the model to

”revise” history.

Stability Handled by mt and nt
to prevent the ”Exploding

Exp” problem.

Key Takeaway: Exponential gating transforms the LSTM from a simple

”forget/remember” unit into a powerful ”search/update” mechanism.

13

sLSTM: New Memory Mixing & Headwise Architecture

From Scalar to Vector Pre-activations

1. Standard Scalar Recurrence:

z̃t = w⊤
z xt + rzht−1 + bz (Classic mixing)

2. New Vectorized Formulation:

z̃t = Wz xt + Rzht−1 + bz
ĩt , f̃t , õt follow the same vector pattern.

• Memory Mixing: The Rzht−1 term allows the model

to correlate all features of the previous state.

• High Dynamic Range: Combined with exponential

gating, this enables ”searching” and ”updating”

discrete states.

Block-diagonal Weights

R

d × d

. . .

dhead

Headwise Memory Mixing:

To balance complexity, R is restricted to a block-

diagonal structure.

• Prevents full d2 compute.

• Each head performs independent internal

mixing.

Note: mt and nt stability logic still applies to the resulting vector activations to prevent exploding exponents.

14

mLSTM: Extending to Matrix Memory

sLSTM (Scalar Memory)

Cell: ct = ft ct−1 + it zt (7)

Normalizer: nt = ft nt−1 + it (8)

Hidden: ht = ot · (ct / nt) (9)

Cell input: zt = tanh(w⊤
z xt + . . .) (10)

Gating: it , ft = exp(. . .) (11-12)

Output: ot = σ(. . .) (13)

Constraint: Scalar memory has limited capacity.

Sequential ht−1 prevents parallelization.

mLSTM (Matrix Memory)

Ct = ft Ct−1 + it vtk⊤t (14)

nt = ft nt−1 + it kt (15)

ht = ot ⊙ h̃t , h̃t = Ctqt /max{| n⊤t qt |, 1}

(16)

qt, kt, vt = Wq,k,vxt + bq,k,v (17)

it , ft = exp(. . .), ĩt , f̃t = wT
i,f xt + bi,f (18)

ot = σ(õt), õt = Woxt + bo) (19)

Innovation: Matrix memory Ct ∈ Rd×d stores

key-value pairs. Removed hidden-to-hidden

recurrent connection (ht−1 to gates) to enable

Parallel Scan. 15

mLSTM: The Matrix Memory & Covariance Update

Matrix Update Visualization

Ct−1 + vtk
⊤
t

k⊤t

vt

= Ct

Covariance Term

• Capacity: Compresses history into Rd×d

matrix.

• Retrieval: Query qt performs a linear

projection on Ct .

The Covariance Update Rule

Update: Ct = ft Ct−1 + it vtk⊤t (14)

Normalizer: nt = ft nt−1 + it kt (15)

E [kt], E [vt] ≈ 0 (via LayerNorm applied before projecting inputs), Ct ef-

fectively tracks the Covariance E [vk⊤] between values and keys.

Efficiency: Fixed-size Rd×d memory =⇒ O(1) inference memory, unlike

Transformers’ O(L) KV cache.

16

Comparison: Standard LSTM vs. sLSTM vs. mLSTM

Feature Standard LSTM sLSTM mLSTM

Memory Scalar ct Scalar ct Matrix Ct ∈ Rd×d

Gating Sigmoid (σ) Exponential (exp) Exponential (exp)

Stability None (Bounded σ) Normalizer nt ,mt Normalizer nt

Mixing Hidden Mixing (ht−1) Hidden Mixing (ht−1) No Mixing

Computation Sequential Sequential Parallelizable

Inference O(1) per step O(1) per step O(1) per step

Summary of Evolution:

• Standard → sLSTM: Switched to exponential gating for better signal amplification, adding a normalizer for stability.

• sLSTM → mLSTM: Replaced scalar memory with a covariance-based matrix memory and removed hidden-to-hidden dependencies to enable

parallel training.

17

Comparison: mLSTM vs. Transformer

Memory Efficiency

N × d

Transformer (KV Cache)

O(N) growth

d × d

mLSTM (Ct)

Constant O(1)

• Transformer: Memory scales linearly with

sequence length N. Struggles with long

sequences.

• mLSTM: Compressed history into fixed d × d

matrix. Constant memory regardless of N.

Softmax vs. Linear Attention

Mechanism Search vs. Summary

Softmax Attn

(Transformer)

Global Search: Sharp fo-

cus on specific tokens via

Softmax(QK⊤). Precise but

O(N) search.

Linear Attn

(mLSTM)

State Tracking: Updates

Ct = ftCt−1+ itvtk⊤t . Build

summary via exp-gating.

Retrieval Transformer: O(N) needle-

in-haystack.

mLSTM: O(1) pattern

tracking.

Core Logic: While Transformers ”look back” at raw data, mLSTM

maintains a compressed mental model, using ft and it to weigh new vs.

old correlations.

18

xLSTM: Residual Block Architecture

• Goal: ”non-linearly summarize the past in a high-dimensional space to better

separate different histories or contexts.”

• The Backbone: Pre-LayerNorm Residual, found in Transformers and SSMs.

• Anatomy of a Block: Each residual block (xl+1 = xl + Block(xl)) contains:

1. Layer Normalization: Applied to input (Pre-LN).

2. xLSTM Core: Either an sLSTM or mLSTM module.

3. Projections: Up/Down projections integrated directly.

4. Residual Connection: Stabilizes gradient flow.

• Unified Design: Enables mixing sLSTM and mLSTM in the same stack.

19

xLSTM: Block Variants and Projection Strategies

sLSTM Block: Post Up-Projection, similar

to Transformer.

• Rationale: Tracks state logic in lower

dimensions before capacity-heavy

non-linearities.

Figure 3: sLSTM Block

mLSTM Block: Pre Up-Projection, similar

to SSM/Mamba.

• Rationale: High-dim inputs increase

key-value retrieval capacity in matrix

memory.

Figure 4: mLSTM Block

20

xLSTM: Stacking Strategy and xLSTM[a:b] Notation

Architecture: Stacking blocks, balancing Parallel Capacity with Sequential Reasoning.

Figure 5: xLSTM Architecture

Notation xLSTM[a:b]: Defines the ratio of block types in the residual stack. Number

of mLSTM blocks a vs sLSTM blocks b 21

xLSTM: Memory & Complexity

• Memory:

• mLSTM Block: Massive Matrix Memory O(d2) capacity, highly parallelizable.

• sLSTM Block: Sequential and slow, but offers memory mixing.

• Algorithmic Complexity:

• Linear Scaling: O(N) with sequence length (vs. Transformer O(N2)).

• Constant Memory: State is compressed into fixed-size matrices regardless of

context length.

Cache Size = O(1) (No growing KV-cache)

22

Experiments (What they validate)

• Goal: validate two core claims of xLSTM:

1. State tracking limitations of LSTMs are fixed via sLSTM

2. Storage capacity limitations of LSTMs are fixed via mLSTM

• Plus: demonstrate effective scaling to LLMs (quality, extrapolation, efficiency)

• Experiments

1. Synthetic Tasks: Formal Languages & State Tracking

2. Multi-Query Associative Recall(MQAR) & Nearest Neighbor Search

3. Large-Scale Language Modeling

4. Scaling Laws

5. Performance & Throughput Analysis

• Baselines: LLaMa(Transformer), Mamba(SSM), RWKV(RNN)

23

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Setup

• Tasks from Chomsky hierarchy: Regular, Context-Free, Context-Sensitive

• Logic/state task example: Parity (even/odd sum over a sequence)

Measures

• Ability to track discrete state over long horizons

• Requires strong recurrent updates and memory mixing (state interactions)

24

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Figure 6: Test of xLSTM’s exponential gating with memory mixing

25

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Results

• Strongly outperforms Transformers and SSMs (e.g., Mamba)

• Transformers/Mamba often fail on hard tracking (e.g., Parity: accuracy < 0.5)

Significance

• sLSTM (scalar LSTM + exponential gating) excels at discrete state

tracking/logic

• Highlights a weakness of many modern “linear” sequence models on stateful tasks

26

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Setup

• “Needle-in-a-haystack”: store many key-value pairs in a sequence

• Later: retrieve correct value for a queried key (multi-query)

Measures

• Associative memory capacity

• Ability to revise stored info (update value when better evidence arrives)

27

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Figure 7: Test of memory capacities of different models at the Multi-Query Associative Recall task with context length 2048.

28

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Results

• mLSTM performs comparably to Transformers

• Outperforms traditional LSTMs and some SSM baselines

• Matrix Memory stores far more information than scalar LSTM memory

Significance

• Validates that Matrix Memory fixes LSTM storage capacity limits

• mLSTM behaves like a recurrent key-value mechanism

29

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Setup

• Train on SlimPajama (cleaned RedPajama; 300B tokens)

• Model sizes: 125M up to 1.3B parameters

Measures

• Validation perplexity for next token prediction and on downstream tasks that

measure common sense reasoning.

30

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Figure 8: Validation set perplexity at next token prediction and on downstream tasks

31

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Results

• xLSTM achieves lower perplexity than Mamba and RWKV across sizes

• Competitive with LLaMA (Transformer), matching or slightly beating it

Significance

• Core “LLM-era” evidence: xLSTM scales effectively

• Unlike classic LSTMs that saturate, xLSTM shows robust scaling behavior

32

Experiment 4. Scaling Laws

Setup

• Train xLSTM models from 125M to 1.3B parameters

• Dataset: SlimPajama (300B tokens)

• Baselines: Mamba, RWKV, LLaMA (Transformer)

Measures

• Validation Perplexity (next-token prediction quality) as model size and compute

increases

33

Experiment 4. Scaling Laws

Figure 9: Scaling laws. Next token prediction perplexity on the SlimPajama validation set
34

Experiment 4. Scaling Laws: Measures & Goal

Results

• xLSTM outperforms Mamba and RWKV at all tested scales

• Lies on the Pareto frontier (best quality for a given compute budget)

Significance

• Shows xLSTM does not saturate like traditional LSTMs

• Demonstrates Transformer-level scaling behavior

• Makes xLSTM viable for large-scale LLM architecture

35

Experiment 5. Performance & Throughput Analysis

Setup

• Compare inference speed latency and throughput

Measures

• Computational efficiency and practicality at scale

36

Experiment 5. Performance & Throughput Analysis

Figure 10: Inference Generative Speed. Left: Generation times, Right: Token throughput

37

Experiment 5. Performance & Throughput Analysis

Inference

• mLSTM: linear generation time O(N)

• No growing KV cache with sequence length ⇒ higher throughput/batch sizes

Significance

• Efficient constant-memory inference

38

Overall Conclusion from Section 4

• sLSTM: strong discrete state tracking and logic capability

• mLSTM: high associative memory capacity (Transformer-like retrieval)

• xLSTM: competitive LLM perplexity, adhering to the Scaling Law, and strong

throughput

39

Limitations and Conclusion

Current Limitations

Parallelizability sLSTM retains hidden-to-hidden recurrent connections, preventing a fully parallel

implementation. Even with CUDA optimizations, it remains <2x slower than mLSTM.

CUDA Efficiency mLSTM suffers from unoptimized CUDA kernels, making it 4x slower than

FlashAttention implementations currently.

Memory Cap While Matrix Memory (d2) is independent of sequence length (N), extreme increases in

N may eventually overload memory. Note: Not an issue for contexts up to 16k tokens.

Research Conclusion

Can xLSTM overcome the limitations of standard LSTMs?

”At least as far as current technologies like Transformers or State Space Models.”

xLSTM provides a scalable RNN alternative with Transformer-level capacity and efficient inference.

40

Future (Current) Work

• xLSTM Scaling Laws: Competitive Performance with Linear

Time-Complexity (October 2025)

Shows that xLSTM scales effectively to large models while maintaining linear time

complexity, offering a more efficient alternative to Transformers for large-scale

training.

• xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference (March 2025)

This work releases and evaluates a 7-billion parameter xLSTM model,

demonstrating it matches the performance of leading Transformer LLMs (like

Llama) of the same size.

• Vision-LSTM: xLSTM as Generic Vision Backbone (June 2024)

xLSTM architecture for computer vision tasks, introducing a ”Vision-LSTM”

(ViL) backbone that processes image patches as sequences.

41

Our Review

• Strengths

• Clear Problem Description and Design Rationale

• Comprehensive Experiments

• Competitive Large-Scale Results

• Overall the paper delivers what authors promise

• Ideas for Future Improvements

• Training efficiency and lack of parallelizability

• Matrix Memory Computational Cost Underexplored

• O(d2) matrix operations per timestep, FLOPs/token experiments

• Memory Saturation Risk Not Fully Addressed

• Authors acknowledge that matrix memory may saturate as sequence length grows but

only test up to 16k context. Does this scale with the number of parameters/compute?

• model is relatively small (from 250M to 1.3B). Not sure the performance once the

model grows big (like 70B+)

42

Thank you!

Questions?

42

References

[1] Beck, M., et al. (2024). xLSTM: Extended Long Short-Term Memory. arXiv preprint arXiv:2405.04517.

[2] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735-1780.

[3] Vaswani, A., et al. (2017). Attention Is All You Need. Advances in Neural Information Processing

Systems (NeurIPS).

[4] Gu, A., & Dao, T. (2023). Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv

preprint arXiv:2312.00752.

[5] Katharopoulos, A., et al. (2020). Transformers are RNNs: Fast Autoregressive Transformers with Linear

Attention. ICML.

Note: Full bibliography and additional technical details can be found in the xLSTM technical report (Beck et al., 2024).

43

Appendix A: Mixing Mechanisms

sLSTM: Memory Mixing

• Good for State Tracking.

• Past info mixed into current gates:

zt = wT
z xt + rzht−1 + bz

• rzht−1: Learned weight matrix mixing

past history.

mLSTM: No Mixing

• Good for Capacity & Speed.

• Gate calculation independent of

previous hidden state:

it = wT
i xt + bi

• No riht−1 term.

44

Appendix B: mLSTM Structure: Gates & Transformer Analogies

Component mLSTM Formulation Transformer Analogy

Key (kt)
1√
d
Wkxt + bk Memory Address / Routing

Query (qt) Wqxt + bq Retrieval Signal

Value (vt) Wvxt + bv Content Information

Gate Type Activation Function / Effect

Input Gate (it) exp(ĩt) ”Write” to Matrix Memory

Forget Gate (ft) exp(f̃t) Decay old correlation

Linear Attention Connection: In mLSTM, the exponential gates act as a dynamic normalization mechanism. When the forget gate ft = 1 and

the input gate is active, the matrix memory Ct =
∑

iτ vτ k⊤τ mathematically mimics Linear Attention.

45

Appendix: Transformer Multi-Head Structure

Input Q,K , V

Linear Layers (×H)

Scaled Dot-Product Attention

Concat & Linear

Key Concept: Instead of a single attention

function, we perform H parallel projections.

Benefit for sLSTM:

• Mimics Transformer’s capacity.

• Stable training via head-wise

normalization.

• Efficient GPU utilization.

46

Appendix: From Single-head to Multi-head sLSTM

Why Multi-head?

• Feature Diversity: Each head

tracks different aspects of the

sequence.

• Parallelism: Independent heads

allow for efficient sub-dimension

processing.

• Scaling: Similar to Transformer’s

MHSA, it enhances capacity.

Note: Total hidden dimension d is split into H heads, each with

dh = d/H.

Feature Standard LSTM sLSTM (Multi-head)

Gates Single i , f , o H × (i , f , o)

Cell State Scalar/Vector ct Parallel heads {c(1)t . . . c
(H)
t }

Dependency Sequential ht−1 Head-wise parallel

Normalization None Exponential (exp) gates

Head Concatenation

ht = Concat(h
(1)
t , h

(2)
t , . . . , h

(H)
t)WO

47

