

xLSTM: Extended Long Short-Term Memory

EECE 571F

Parshan Javanrood and Ziqiao (John) Lin

January 21, 2026

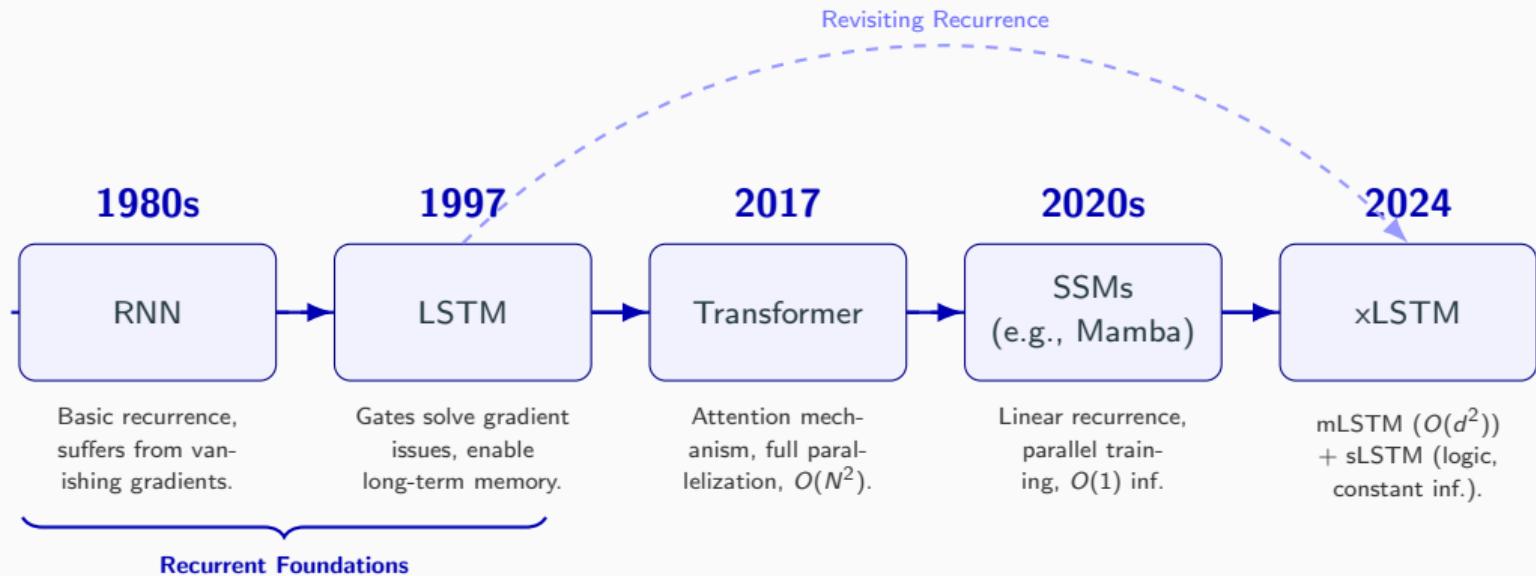
University of British Columbia

Extended Long Short-Term Memory (xLSTM)

By the end of this presentation, you'll know...

- ▶ The evolution from **Recurrent Foundations** to the Attention era
- ▶ How **sLSTM** uses **exponential gating** and **stabilizers** to overcome the sigmoid bottleneck
- ▶ The transition to **mLSTM** with **matrix memory** for enhanced storage capacity
- ▶ Why **removing memory mixing** enables Transformer-like **parallel training** via parallel scan
- ▶ How xLSTM achieves **constant inference cost** and scales effectively in the LLM era

Evolution of Sequence Models: A Timeline



Standard LSTM: Architecture Overview

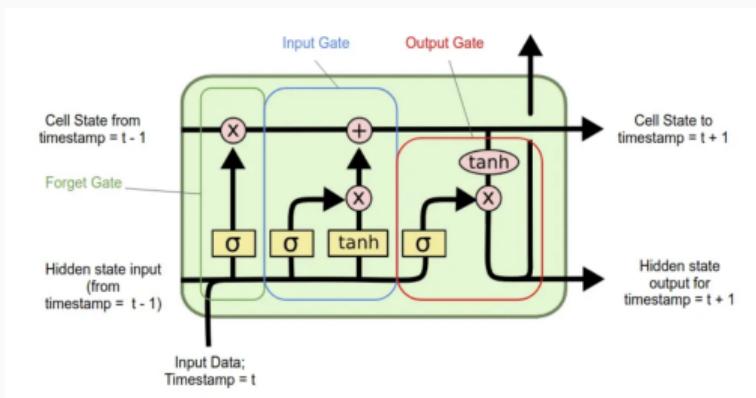


Figure 1: Standard LSTM Cell

Standard Forward Pass

$$\begin{aligned} \text{Cell: } c_t &= f_t c_{t-1} + i_t z_t \\ \text{Hidden: } h_t &= o_t \cdot \tilde{h}_t, \quad \tilde{h}_t = \tanh(c_t) \\ \text{Cell Input: } z_t &= \tanh(\tilde{z}_t), \quad \tilde{z}_t = \mathbf{w}_z^\top \mathbf{x}_t + r_z h_{t-1} + b_z \\ \text{Input Gate: } i_t &= \sigma(\tilde{i}_t), \quad \tilde{i}_t = \mathbf{w}_i^\top \mathbf{x}_t + r_i h_{t-1} + b_i \\ \text{Forget Gate: } f_t &= \sigma(\tilde{f}_t), \quad \tilde{f}_t = \mathbf{w}_f^\top \mathbf{x}_t + r_f h_{t-1} + b_f \\ \text{Output Gate: } o_t &= \sigma(\tilde{o}_t), \quad \tilde{o}_t = \mathbf{w}_o^\top \mathbf{x}_t + r_o h_{t-1} + b_o \end{aligned}$$

Limitation: h_{t-1} dependency prevents parallelization.

Image Credit to:

<https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2>

Limitations of LSTMs vs. The Rise of Attention

Traditional LSTM Constraints

- **Scalar Compression:** Information is forced into a fixed-size vector; $O(d)$ capacity.
- **Saturated Gating:** Sigmoid gates ($0 \rightarrow 1$) inhibit significant memory revision.
- **Sequential Flow:** $O(N)$ dependency prevents GPU parallelization.
- **Retrieval Failure:** Struggles with exact-match "Nearest Neighbor Search."

The Transformer Paradigm

- **Memory as Indexing:** Stores history as Key-Value pairs; no initial compression.
- **Dynamic Routing:** Softmax attention allows "sharp" focus on any token.
- **Full Parallelism:** All tokens interact simultaneously during training.
- **Global Context:** Direct point-to-point connections regardless of distance.

Limitation: Inability to Revise Storage Decisions

The Sigmoid Bottleneck in LSTM Memory Management

The Core Issue

LSTMs struggle to **overwrite** or update stored values when more relevant information appears later in a sequence.

Nearest Neighbor Search Failure

The cell state is "saturated" by v_1 . The model lacks the dynamic range to fully "switch" to v_2 .

Case Study: Nearest Neighbor Search

- **Initial Storage:** The model encounters vector v_1 (similar to a reference). The input gate stores it in the cell state.
- **New Information:** A "more similar" vector v_2 appears later in the sequence.
- **Revision Failure:** Due to the **squashing effect** of Sigmoid gates, the LSTM cannot significantly "suppress" v_1 to prioritize v_2 .

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key

Value

Prediction

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key 2

Value 12

Prediction 12

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key	2	1.5
-----	---	-----

Value	12	17
-------	----	----

Prediction	12	12
-------------------	----	----

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key	2	1.5	4
-----	---	-----	---

Value	12	17	14
-------	----	----	----

Prediction	12	12	14
------------	----	----	----

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key	2	1.5	4	5.5
-----	---	-----	---	-----

Value	12	17	14	8
-------	----	----	----	---

Prediction	12	12	14	8
------------	----	----	----	---

Limitations of the LSTM

Nearest Neighbor Search

Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key	2	1.5	4	5.5	9
Value	12	17	14	8	11
Prediction	12	12	14	8	8

Limitations of the LSTM

Nearest Neighbor Search

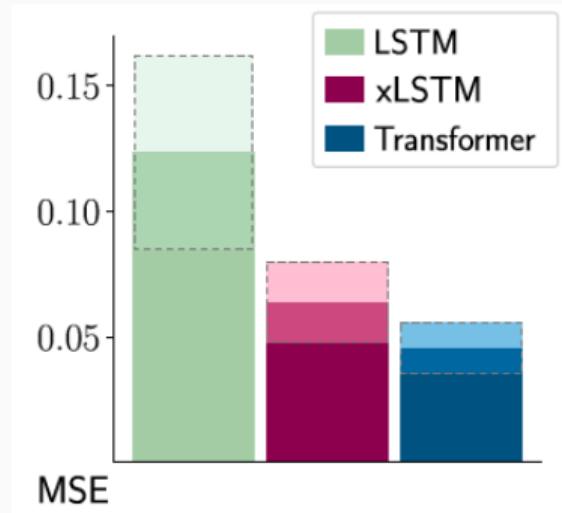
Problem:

- **Goal:** “Predict the value of the closest key to the query”

Query: 6

Key	2	1.5	4	5.5	9
Value	12	17	14	8	11
Prediction	12	12	14	8	8

Figure 2: Mean Squared Error



Limitation: Limited Storage Capacity

The Compression Bottleneck of Scalar Cell States

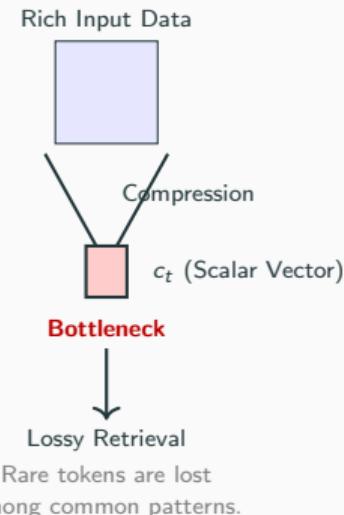
Scalar vs. Matrix Capacity

The Core Issue

Information must be compressed into **scalar cell states** ($c_t \in \mathbb{R}$), which severely limits the fidelity of the stored memory.

Consequence: Rare Token Prediction

- **High Compression:** Multi-dimensional features are forced into a single vector space, leading to "cluttered" memory.
- **Information Loss:** Specific details of less frequent tokens are "washed out" by dominant statistical patterns.
- **Failure:** The model cannot distinguish or recall specific, rare information because the storage capacity ($O(d)$) is insufficient.



Limitation: Lack of Parallelizability

The Sequential Bottleneck of Memory Mixing

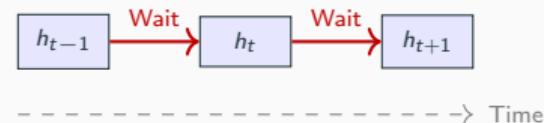
The Core Issue

LSTMs rely on **Memory Mixing** (hidden-to-hidden connections), where the current state h_t strictly depends on the previous state h_{t-1} .

Impact: Sequential Training

- **Recurrence Constraint:** Temporal dependencies force the model to process tokens one-by-one ($O(N)$ complexity).
- **Hardware Inefficiency:** Unlike Transformers, it is impossible to parallelize training across the time dimension.
- **Result:** Significantly slower training speeds on modern GPUs, creating a massive "compute gap" compared to attention-based models.

The Sequential Chain ($O(N)$)



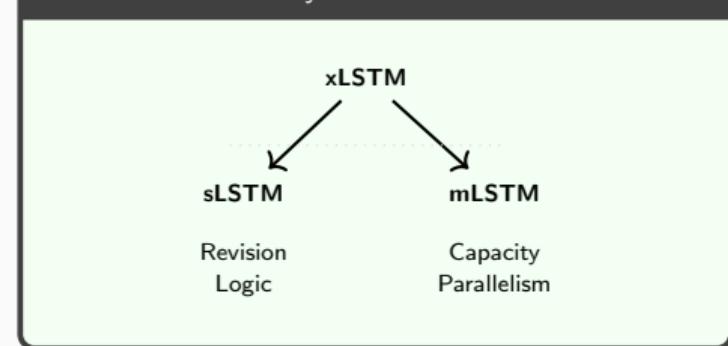
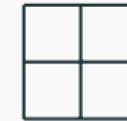
No Parallelism:
Each step must finish
before the next begins.

Introducing xLSTM: Extended LSTM

From LSTM to xLSTM: Three Pillars

- ▶ **sLSTM (Scalar LSTM):** Introduces **Exponential Gating** to allow high-dynamic memory revision (replaces Sigmoid).
- ▶ **mLSTM (Matrix LSTM):** Replaces scalar cells with **Matrix Memory** ($O(d^2)$), drastically increasing storage capacity.
- ▶ **Parallelization:** By removing memory mixing in mLSTM, the model enables **Parallel Scan** for hardware efficiency.

The xLSTM Family



Matrix Memory ($d \times d$)

The Result: xLSTM scales like a Transformer while maintaining the constant inference memory of an LSTM.

sLSTM: Re-designing the LSTM Forward Pass

Standard LSTM

$$c_t = f_t c_{t-1} + i_t z_t \quad (1)$$

$$h_t = o_t \cdot \tilde{h}_t, \tilde{h}_t = \tanh(c_t) \quad (2)$$

$$z_t = \tanh(\tilde{z}_t), \tilde{z}_t = \mathbf{w}_z^T \mathbf{x}_t + r_z h_{t-1} + b_z \quad (3)$$

$$i_t = \sigma(\tilde{i}_t), \tilde{i}_t = \mathbf{w}_i^T \mathbf{x}_t + r_i h_{t-1} + b_i \quad (4)$$

$$f_t = \sigma(\tilde{f}_t), \tilde{f}_t = \mathbf{w}_f^T \mathbf{x}_t + r_f h_{t-1} + b_f \quad (5)$$

$$o_t = \sigma(\tilde{o}_t), \tilde{o}_t = \mathbf{w}_o^T \mathbf{x}_t + r_o h_{t-1} + b_o \quad (6)$$

Limitation: Sigmoid $\in [0, 1]$ cannot amplify signals. \tanh limits the dynamic range of memory.

sLSTM (Proposed)

$$c_t = f_t c_{t-1} + i_t z_t \quad (7)$$

$$n_t = f_t n_{t-1} + i_t \quad (8)$$

$$h_t = o_t \cdot \tilde{h}_t, \tilde{h}_t = c_t / n_t \quad (9)$$

$$z_t = \tanh(\tilde{z}_t), \tilde{z}_t = \mathbf{w}_z^T \mathbf{x}_t + r_z h_{t-1} + b_z \quad (10)$$

$$i_t = \exp(\tilde{i}_t), \tilde{i}_t = \mathbf{w}_i^T \mathbf{x}_t + r_i h_{t-1} + b_i \quad (11)$$

$$f_t = \exp(\tilde{f}_t) \text{ OR } \sigma(\tilde{f}_t), \tilde{f}_t = \mathbf{w}_f^T \mathbf{x}_t + r_f h_{t-1} + b_f \quad (12)$$

$$o_t = \sigma(\tilde{o}_t), \tilde{o}_t = \mathbf{w}_o^T \mathbf{x}_t + r_o h_{t-1} + b_o \quad (13)$$

Innovation: \exp allows **amplification**. Normalizer n_t ensures stability via **division**.

sLSTM: Numerical Stability via Stabilizer m_t

Problem: $\exp(\cdot)$ gates $\Rightarrow c_t, n_t$ grow exponentially \Rightarrow **Overflow.**

Stable Implementation

The Solution: m_t

Track the **running maximum** of log-gates:

$$m_t = \max(\tilde{f}_t + m_{t-1}, \tilde{i}_t)$$

(Similar to Log-Sum-Exp trick)

\Rightarrow

Rescale gates by m_t :

$$\begin{aligned} i'_t &= \exp(\tilde{i}_t - m_t) \\ f'_t &= \exp(\tilde{f}_t + m_{t-1} - m_t) \end{aligned}$$

Updated States:

$$\begin{aligned} c_t &= f'_t c_{t-1} + i'_t z_t \\ n_t &= f'_t n_{t-1} + i'_t \end{aligned}$$

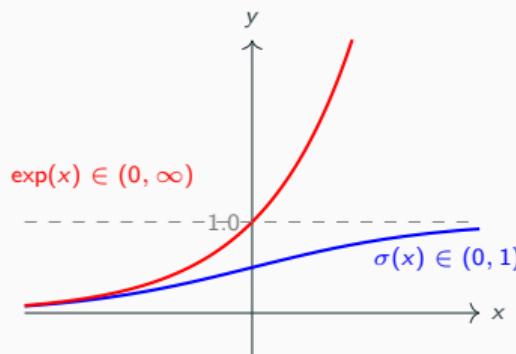
Final Output: $h_t = o_t \cdot \frac{c_t}{n_t}$

(Division by n_t normalizes h_t , keeping it bounded.)

sLSTM Innovation: Sigmoid vs. Exponential Gating

Why Switch to Exp?

Function Comparison



- **Sigmoid:** Squashing mechanism.
- **Exponential:** Amplification mechanism.

Gating	Mathematical Logic
Traditional (σ)	Cannot increase state magnitude beyond the previous step.
sLSTM (exp)	Enables Signal Amplification , allowing the model to "revise" history.
Stability	Handled by m_t and n_t to prevent the "Exploding Exp" problem.

Key Takeaway: Exponential gating transforms the LSTM from a simple "forget/remember" unit into a powerful "search/update" mechanism.

sLSTM: New Memory Mixing & Headwise Architecture

From Scalar to Vector Pre-activations

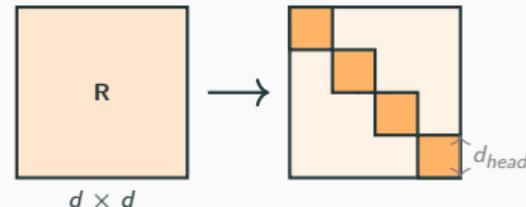
1. Standard Scalar Recurrence:

$$\tilde{z}_t = w_z^\top x_t + r_z h_{t-1} + b_z \quad (\text{Classic mixing})$$

2. New Vectorized Formulation:

$$\begin{aligned} \tilde{z}_t &= W_z x_t + R_z h_{t-1} + b_z \\ \tilde{i}_t, \tilde{f}_t, \tilde{o}_t &\text{ follow the same vector pattern.} \end{aligned}$$

Block-diagonal Weights



- Memory Mixing:** The $R_z h_{t-1}$ term allows the model to correlate all features of the previous state.
- High Dynamic Range:** Combined with exponential gating, this enables "searching" and "updating" discrete states.

Headwise Memory Mixing:

To balance complexity, R is restricted to a **block-diagonal structure**.

- Prevents full d^2 compute.
- Each head performs independent internal mixing.

Note: m_t and n_t stability logic still applies to the resulting vector activations to prevent exploding exponents.

mLSTM: Extending to Matrix Memory

sLSTM (Scalar Memory)

$$\text{Cell: } c_t = f_t c_{t-1} + i_t z_t \quad (7)$$

$$\text{Normalizer: } n_t = f_t n_{t-1} + i_t \quad (8)$$

$$\text{Hidden: } h_t = o_t \cdot (c_t / n_t) \quad (9)$$

$$\text{Cell input: } z_t = \tanh(\mathbf{w}_z^\top \mathbf{x}_t + \dots) \quad (10)$$

$$\text{Gating: } i_t, f_t = \exp(\dots) \quad (11-12)$$

$$\text{Output: } o_t = \sigma(\dots) \quad (13)$$

Constraint: Scalar memory has limited capacity.
Sequential h_{t-1} prevents parallelization.

mLSTM (Matrix Memory)

$$\mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t \mathbf{v}_t \mathbf{k}_t^\top \quad (14)$$

$$\mathbf{n}_t = f_t \mathbf{n}_{t-1} + i_t \mathbf{k}_t \quad (15)$$

$$\mathbf{h}_t = o_t \odot \tilde{\mathbf{h}}_t, \quad \tilde{\mathbf{h}}_t = \mathbf{C}_t \mathbf{q}_t / \max\{|\mathbf{n}_t^\top \mathbf{q}_t|, 1\} \quad (16)$$

$$\mathbf{q}_t, \mathbf{k}_t, \mathbf{v}_t = \mathbf{W}_{q,k,v} \mathbf{x}_t + \mathbf{b}_{q,k,v} \quad (17)$$

$$i_t, f_t = \exp(\dots), \quad \tilde{i}_t, \tilde{f}_t = \mathbf{w}_{i,f}^\top \mathbf{x}_t + b_{i,f} \quad (18)$$

$$o_t = \sigma(\tilde{o}_t), \quad \tilde{o}_t = \mathbf{W}_o \mathbf{x}_t + \mathbf{b}_o \quad (19)$$

Innovation: Matrix memory $\mathbf{C}_t \in \mathbb{R}^{d \times d}$ stores key-value pairs. Removed **hidden-to-hidden recurrent connection** (h_{t-1} to gates) to enable **Parallel Scan**.

mLSTM: The Matrix Memory & Covariance Update

Matrix Update Visualization

$$\mathbf{C}_{t-1} + \mathbf{v}_t \mathbf{k}_t^\top = \mathbf{C}_t$$

Covariance Term

\mathbf{k}_t^\top
↓
 \mathbf{v}_t

The Covariance Update Rule

$$\text{Update: } \mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t \mathbf{v}_t \mathbf{k}_t^\top \quad (14)$$

$$\text{Normalizer: } n_t = f_t n_{t-1} + i_t k_t \quad (15)$$

$E[\mathbf{k}_t], E[\mathbf{v}_t] \approx 0$ (via LayerNorm applied before projecting inputs), \mathbf{C}_t effectively tracks the Covariance $E[\mathbf{v}\mathbf{k}^\top]$ between values and keys.

- **Capacity:** Compresses history into $\mathbb{R}^{d \times d}$ matrix.
- **Retrieval:** Query \mathbf{q}_t performs a linear projection on \mathbf{C}_t .

Efficiency: Fixed-size $\mathbb{R}^{d \times d}$ memory $\implies O(1)$ inference memory, unlike Transformers' $O(L)$ KV cache.

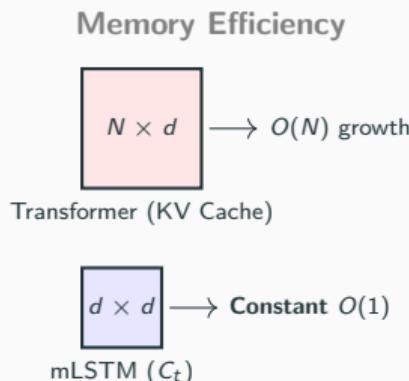
Comparison: Standard LSTM vs. sLSTM vs. mLSTM

Feature	Standard LSTM	sLSTM	mLSTM
Memory	Scalar c_t	Scalar c_t	Matrix $\mathbf{C}_t \in \mathbb{R}^{d \times d}$
Gating	Sigmoid (σ)	Exponential (exp)	Exponential (exp)
Stability	None (Bounded σ)	Normalizer n_t, m_t	Normalizer \mathbf{n}_t
Mixing	Hidden Mixing (h_{t-1})	Hidden Mixing (h_{t-1})	No Mixing
Computation	Sequential	Sequential	Parallelizable
Inference	$O(1)$ per step	$O(1)$ per step	$O(1)$ per step

Summary of Evolution:

- Standard → sLSTM: Switched to exponential gating for better signal amplification, adding a normalizer for stability.
- sLSTM → mLSTM: Replaced scalar memory with a covariance-based matrix memory and removed hidden-to-hidden dependencies to enable parallel training.

Comparison: mLSTM vs. Transformer



- **Transformer:** Memory scales linearly with sequence length N . Struggles with long sequences.
- **mLSTM:** Compressed history into fixed $d \times d$ matrix. Constant memory regardless of N .

Softmax vs. Linear Attention

Mechanism	Search vs. Summary
Softmax Attn (Transformer)	Global Search: Sharp focus on specific tokens via $\text{Softmax}(\mathbf{Q}\mathbf{K}^\top)$. Precise but $O(N)$ search.
Linear Attn (mLSTM)	State Tracking: Updates $\mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t \mathbf{v}_t \mathbf{k}_t^\top$. Build summary via exp-gating.
Retrieval	Transformer: $O(N)$ needle-in-haystack. mLSTM: $O(1)$ pattern tracking.

Core Logic: While Transformers "look back" at raw data, mLSTM maintains a **compressed mental model**, using f_t and i_t to weigh new vs. old correlations.

xLSTM: Residual Block Architecture

- **Goal:** "non-linearly summarize the past in a high-dimensional space to better separate different histories or contexts."
- **The Backbone:** *Pre-LayerNorm Residual*, found in Transformers and SSMs.
- **Anatomy of a Block:** Each residual block ($x_{l+1} = x_l + \text{Block}(x_l)$) contains:
 1. **Layer Normalization:** Applied to input (Pre-LN).
 2. **xLSTM Core:** Either an s LSTM or m LSTM module.
 3. **Projections:** Up/Down projections integrated directly.
 4. **Residual Connection:** Stabilizes gradient flow.
- **Unified Design:** Enables mixing s LSTM and m LSTM in the same stack.

xLSTM: Block Variants and Projection Strategies

sLSTM Block: Post Up-Projection, similar to Transformer.

- **Rationale:** Tracks state logic in lower dimensions before capacity-heavy non-linearities.

mLSTM Block: Pre Up-Projection, similar to SSM/Mamba.

- **Rationale:** High-dim inputs increase key-value retrieval capacity in matrix memory.

Figure 3: sLSTM Block

Figure 4: mLSTM Block

xLSTM: Stacking Strategy and xLSTM[a:b] Notation

Architecture: Stacking blocks, balancing *Parallel Capacity* with *Sequential Reasoning*.



Figure 5: xLSTM Architecture

Notation xLSTM[a:b]: Defines the ratio of block types in the residual stack. Number of mLSTM blocks **a** vs sLSTM blocks **b**

xLSTM: Memory & Complexity

- **Memory:**
 - **mLSTM Block:** Massive Matrix Memory $O(d^2)$ capacity, highly parallelizable.
 - **sLSTM Block:** Sequential and slow, but offers memory mixing.
- **Algorithmic Complexity:**
 - **Linear Scaling:** $O(N)$ with sequence length (vs. Transformer $O(N^2)$).
 - **Constant Memory:** State is compressed into fixed-size matrices regardless of context length.

Cache Size = $O(1)$ (No growing KV-cache)

Experiments (What they validate)

- Goal: validate two core claims of **xLSTM**:
 1. **State tracking** limitations of LSTMs are fixed via **sLSTM**
 2. **Storage capacity** limitations of LSTMs are fixed via **mLSTM**
- Plus: demonstrate effective **scaling to LLMs** (quality, extrapolation, efficiency)
- Experiments
 1. Synthetic Tasks: Formal Languages & State Tracking
 2. Multi-Query Associative Recall(MQAR) & Nearest Neighbor Search
 3. Large-Scale Language Modeling
 4. Scaling Laws
 5. Performance & Throughput Analysis
- Baselines: LLaMa(Transformer), Mamba(SSM), RWKV(RNN)

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Setup

- Tasks from Chomsky hierarchy: Regular, Context-Free, Context-Sensitive
- Logic/state task example: **Parity** (even/odd sum over a sequence)

Measures

- Ability to **track discrete state** over long horizons
- Requires strong recurrent updates and **memory mixing** (state interactions)

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

	Context Sensitive		Deterministic Context Free		Regular					
	Bucket Sort	Missing Duplicate	Mod Arithmetic (w/ Brackets)	Solve Equation	Cycle Nav	Even Pairs	Mod Arithmetic (w/o Brackets)	Parity	Majority	Majority Count
Llama	0.92 ± 0.02	0.08 ± 0.0	0.02 ± 0.0	0.02 ± 0.0	0.04 ± 0.01	1.0 ± 0.0	0.03 ± 0.0	0.03 ± 0.01	0.37 ± 0.01	0.13 ± 0.0
Mamba	0.69 ± 0.0	0.15 ± 0.0	0.04 ± 0.01	0.05 ± 0.02	0.86 ± 0.04	1.0 ± 0.0	0.05 ± 0.02	0.13 ± 0.02	0.69 ± 0.01	0.45 ± 0.03
Retention	0.13 ± 0.01	0.03 ± 0.0	0.03 ± 0.0	0.03 ± 0.0	0.05 ± 0.01	0.51 ± 0.07	0.04 ± 0.0	0.05 ± 0.01	0.36 ± 0.0	0.12 ± 0.01
Hyena	0.3 ± 0.02	0.06 ± 0.02	0.05 ± 0.0	0.02 ± 0.0	0.06 ± 0.01	0.93 ± 0.07	0.04 ± 0.0	0.04 ± 0.0	0.36 ± 0.01	0.18 ± 0.02
RWKV-4	0.54 ± 0.0	0.21 ± 0.01	0.06 ± 0.0	0.07 ± 0.0	0.13 ± 0.0	1.0 ± 0.0	0.07 ± 0.0	0.06 ± 0.0	0.63 ± 0.0	0.13 ± 0.0
RWKV-5	0.49 ± 0.04	0.15 ± 0.01	0.08 ± 0.0	0.08 ± 0.0	0.26 ± 0.05	1.0 ± 0.0	0.15 ± 0.02	0.06 ± 0.03	0.73 ± 0.01	0.34 ± 0.03
RWKV-6	0.96 ± 0.0	0.23 ± 0.06	0.09 ± 0.01	0.09 ± 0.02	0.31 ± 0.14	1.0 ± 0.0	0.16 ± 0.0	0.22 ± 0.12	0.76 ± 0.01	0.24 ± 0.01
LSTM (Block)	0.99 ± 0.0	0.15 ± 0.0	0.76 ± 0.0	0.5 ± 0.05	0.97 ± 0.03	1.0 ± 0.0	0.91 ± 0.09	1.0 ± 0.0	0.58 ± 0.02	0.27 ± 0.0
LSTM	0.94 ± 0.01	0.2 ± 0.0	0.72 ± 0.04	0.38 ± 0.05	0.93 ± 0.07	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	0.82 ± 0.02	0.33 ± 0.0
xLSTM[0:1]	0.84 ± 0.08	0.23 ± 0.01	0.57 ± 0.09	0.55 ± 0.09	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	0.75 ± 0.02	0.22 ± 0.0
xLSTM[1:0]	0.97 ± 0.0	0.33 ± 0.22	0.03 ± 0.0	0.03 ± 0.01	0.86 ± 0.01	1.0 ± 0.0	0.04 ± 0.0	0.04 ± 0.01	0.74 ± 0.01	0.46 ± 0.0
xLSTM[1:1]	0.7 ± 0.21	0.2 ± 0.01	0.15 ± 0.06	0.24 ± 0.04	0.8 ± 0.03	1.0 ± 0.0	0.6 ± 0.4	1.0 ± 0.0	0.64 ± 0.04	0.5 ± 0.0

Figure 6: Test of xLSTM's exponential gating with memory mixing

Experiment 1. Synthetic Tasks: Formal Languages & State Tracking

Results

- Strongly outperforms **Transformers** and **SSMs** (e.g., Mamba)
- Transformers/Mamba often fail on hard tracking (e.g., Parity: accuracy < 0.5)

Significance

- sLSTM (scalar LSTM + exponential gating) excels at **discrete state tracking/logic**
- Highlights a weakness of many modern “linear” sequence models on stateful tasks

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Setup

- “Needle-in-a-haystack”: store many **key-value** pairs in a sequence
- Later: retrieve correct value for a queried key (multi-query)

Measures

- **Associative memory capacity**
- Ability to **revise** stored info (update value when better evidence arrives)

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

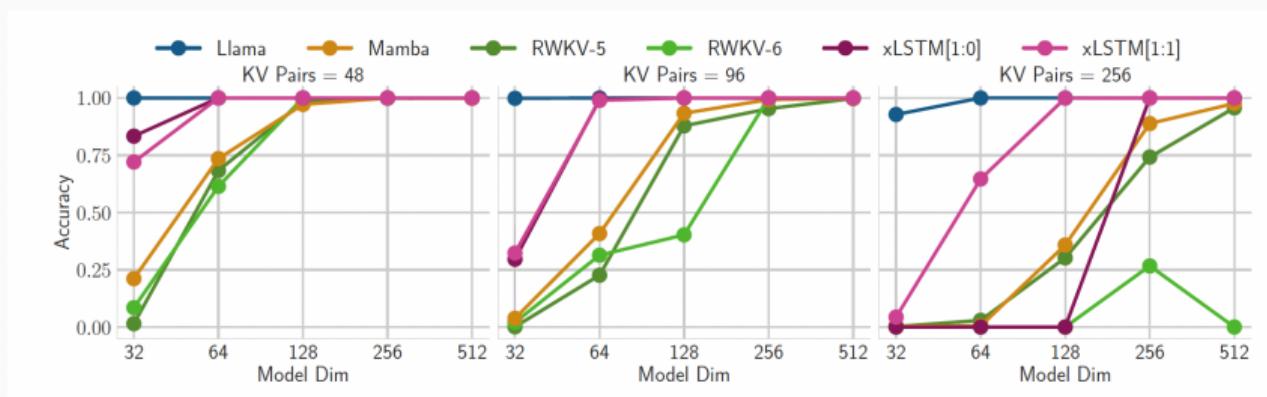


Figure 7: Test of memory capacities of different models at the Multi-Query Associative Recall task with context length 2048.

Experiment 2. MQAR & Nearest Neighbor Search (Associative Recall)

Results

- **mLSTM** performs comparably to **Transformers**
- Outperforms traditional LSTMs and some SSM baselines
- Matrix Memory stores far more information than scalar LSTM memory

Significance

- Validates that **Matrix Memory** fixes LSTM **storage capacity** limits
- mLSTM behaves like a **recurrent key-value mechanism**

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Setup

- Train on **SlimPajama** (cleaned RedPajama; 300B tokens)
- Model sizes: **125M** up to **1.3B** parameters

Measures

- **Validation perplexity** for next token prediction and on downstream tasks that measure common sense reasoning.

Experiment 3. Large-Scale Language Modeling (SlimPajama)

	Model	#Params M	SlimPajama (300B) ppl ↓	LAMBADA ppl ↓	LAMBADA acc ↑	HellaSwag acc ↑	PIQA acc ↑	ARC-E acc ↑	ARC-C acc ↑	WinoGrande acc ↑	Average acc ↑
125M	RWKV-4	169.4	16.66	54.72	23.77	34.03	66.00	47.94	24.06	50.91	41.12
	Llama	162.2	15.89	39.21	31.54	34.09	65.45	45.33	23.63	50.67	41.78
	Mamba	167.8	15.08	27.76	34.14	36.47	66.76	48.86	24.40	51.14	43.63
	xLSTM[1:0]	163.8	<u>14.63</u>	25.98	36.52	<u>36.74</u>	65.61	47.81	<u>24.83</u>	51.85	<u>43.89</u>
	xLSTM[7:1]	163.7	14.60	<u>26.59</u>	<u>36.08</u>	36.75	66.87	<u>48.32</u>	25.26	<u>51.70</u>	44.16
350M	RWKV-4	430.5	12.62	21.57	36.62	42.47	69.42	54.46	25.43	51.22	46.60
	Llama	406.6	12.19	15.73	44.19	44.45	69.15	52.23	26.28	53.59	48.32
	Mamba	423.1	11.64	12.83	46.24	47.55	<u>69.70</u>	55.47	<u>27.56</u>	<u>54.30</u>	50.14
	xLSTM[1:0]	409.3	11.31	11.49	49.33	48.06	69.59	<u>55.72</u>	26.62	54.38	<u>50.62</u>
	xLSTM[7:1]	408.4	<u>11.37</u>	<u>12.11</u>	47.74	<u>47.89</u>	71.16	56.61	<u>27.82</u>	53.28	50.75
760M	RWKV-4	891.0	10.55	10.98	47.43	52.29	<u>72.69</u>	58.84	28.84	55.41	52.58
	Llama	834.1	10.60	9.90	51.41	52.16	<u>70.95</u>	56.48	28.75	56.67	52.74
	Mamba	870.5	10.24	9.24	50.84	53.97	71.16	60.44	<u>29.78</u>	<u>56.99</u>	53.86
	xLSTM[1:0]	840.4	9.86	<u>8.09</u>	<u>54.78</u>	<u>55.72</u>	<u>72.69</u>	62.75	<u>32.59</u>	58.17	56.12
	xLSTM[7:1]	839.7	<u>9.91</u>	8.07	55.27	56.12	72.74	<u>61.36</u>	29.61	56.43	<u>55.26</u>
1.3B	RWKV-4	1515.2	9.83	9.84	49.78	56.20	<u>74.70</u>	61.83	30.63	55.56	54.78
	Llama	1420.4	9.44	7.23	<u>57.44</u>	57.81	73.12	62.79	31.74	59.04	56.99
	Mamba	1475.3	9.14	7.41	55.64	60.45	74.43	66.12	33.70	60.14	<u>58.41</u>
	xLSTM[1:0]	1422.6	8.89	6.86	57.83	60.91	74.59	64.31	<u>32.59</u>	60.62	58.48
	xLSTM[7:1]	1420.1	<u>9.00</u>	<u>7.04</u>	56.69	60.26	74.92	<u>65.11</u>	32.34	59.27	58.10

Figure 8: Validation set perplexity at next token prediction and on downstream tasks

Experiment 3. Large-Scale Language Modeling (SlimPajama)

Results

- xLSTM achieves **lower perplexity** than **Mamba** and **RWKV** across sizes
- Competitive with **LLaMA** (Transformer), matching or slightly beating it

Significance

- Core “LLM-era” evidence: xLSTM **scales effectively**
- Unlike classic LSTMs that saturate, xLSTM shows robust scaling behavior

Experiment 4. Scaling Laws

Setup

- Train xLSTM models from **125M to 1.3B parameters**
- Dataset: **SlimPajama** (300B tokens)
- Baselines: **Mamba, RWKV, LLaMA (Transformer)**

Measures

- **Validation Perplexity** (next-token prediction quality) as model size and compute increases

Experiment 4. Scaling Laws

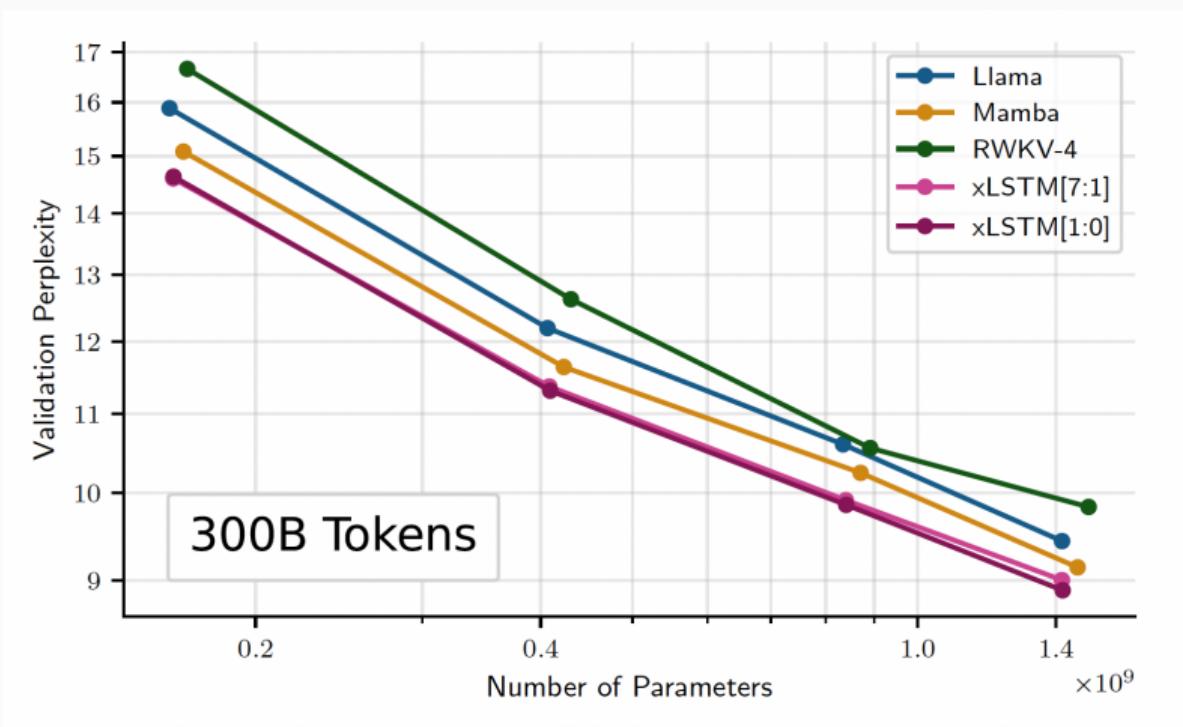


Figure 9: Scaling laws. Next token prediction perplexity on the SlimPajama validation set

Experiment 4. Scaling Laws: Measures & Goal

Results

- xLSTM outperforms **Mamba** and **RWKV** at all tested scales
- Lies on the **Pareto frontier** (best quality for a given compute budget)

Significance

- Shows xLSTM **does not saturate** like traditional LSTMs
- Demonstrates **Transformer-level scaling behavior**
- Makes xLSTM viable for large-scale LLM architecture

Experiment 5. Performance & Throughput Analysis

Setup

- Compare inference speed latency and throughput

Measures

- **Computational efficiency** and practicality at scale

Experiment 5. Performance & Throughput Analysis

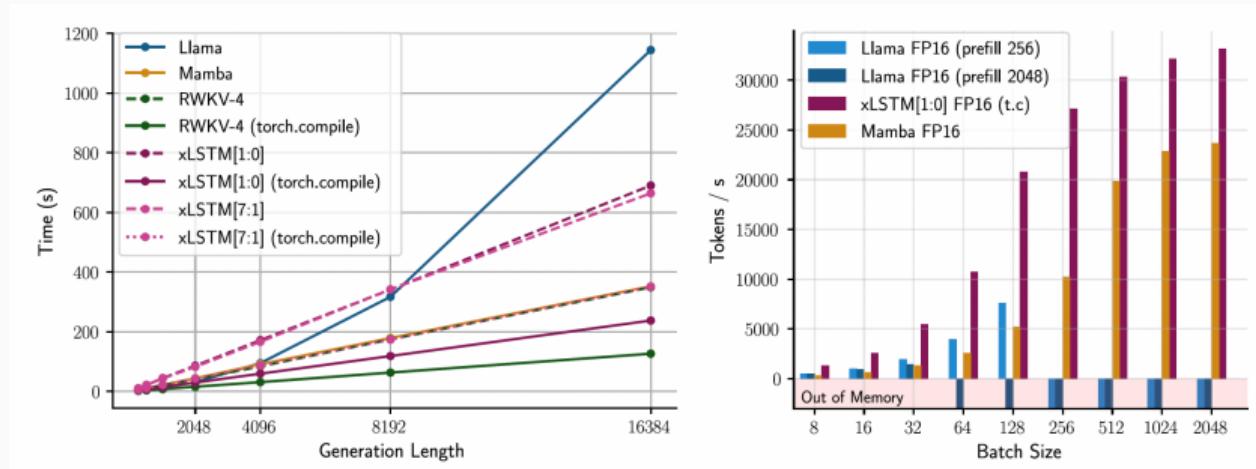


Figure 10: Inference Generative Speed. **Left:** Generation times, **Right:** Token throughput

Experiment 5. Performance & Throughput Analysis

Inference

- mLSTM: **linear generation time** $O(N)$
- No growing KV cache with sequence length \Rightarrow higher throughput/batch sizes

Significance

- Efficient constant-memory inference

Overall Conclusion from Section 4

- **sLSTM**: strong discrete **state tracking** and logic capability
- **mLSTM**: high **associative memory capacity** (Transformer-like retrieval)
- **xLSTM**: competitive **LLM perplexity**, adhering to the **Scaling Law**, and strong **throughput**

Limitations and Conclusion

Current Limitations

Parallelizability **sLSTM** retains hidden-to-hidden recurrent connections, preventing a fully parallel implementation. Even with CUDA optimizations, it remains **<2x slower** than **mLSTM**.

CUDA Efficiency **mLSTM** suffers from unoptimized CUDA kernels, making it **4x slower** than **FlashAttention** implementations currently.

Memory Cap While Matrix Memory (d^2) is independent of sequence length (N), extreme increases in N may eventually overload memory. *Note: Not an issue for contexts up to 16k tokens.*

Research Conclusion

Can xLSTM overcome the limitations of standard LSTMs?

"At least as far as current technologies like Transformers or State Space Models."

Future (Current) Work

- **xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity (October 2025)**

Shows that xLSTM scales effectively to large models while maintaining linear time complexity, offering a more efficient alternative to Transformers for large-scale training.

- **xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference (March 2025)**

This work releases and evaluates a 7-billion parameter xLSTM model, demonstrating it matches the performance of leading Transformer LLMs (like Llama) of the same size.

- **Vision-LSTM: xLSTM as Generic Vision Backbone (June 2024)**

xLSTM architecture for computer vision tasks, introducing a "Vision-LSTM" (ViL) backbone that processes image patches as sequences.

Our Review

- **Strengths**

- Clear Problem Description and Design Rationale
- Comprehensive Experiments
- Competitive Large-Scale Results
- **Overall** the paper delivers what authors promise

- **Ideas for Future Improvements**

- Training efficiency and lack of parallelizability
- Matrix Memory Computational Cost Underexplored
 - $O(d^2)$ matrix operations per timestep, FLOPs/token experiments
- Memory Saturation Risk Not Fully Addressed
 - Authors acknowledge that matrix memory may saturate as sequence length grows but only test up to 16k context. Does this scale with the number of parameters/compute?
- model is relatively small (from 250M to 1.3B). Not sure the performance once the model grows big (like 70B+)

Thank you!
Questions?

References

- [1] Beck, M., et al. (2024). *xLSTM: Extended Long Short-Term Memory*. arXiv preprint arXiv:2405.04517.
- [2] Hochreiter, S., & Schmidhuber, J. (1997). *Long Short-Term Memory*. Neural Computation, 9(8), 1735-1780.
- [3] Vaswani, A., et al. (2017). *Attention Is All You Need*. Advances in Neural Information Processing Systems (NeurIPS).
- [4] Gu, A., & Dao, T. (2023). *Mamba: Linear-Time Sequence Modeling with Selective State Spaces*. arXiv preprint arXiv:2312.00752.
- [5] Katharopoulos, A., et al. (2020). *Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention*. ICML.

Note: Full bibliography and additional technical details can be found in the xLSTM technical report (Beck et al., 2024).

Appendix A: Mixing Mechanisms

sLSTM: Memory Mixing

- Good for State Tracking.
- Past info mixed into current gates:

$$z_t = w_z^T x_t + \mathbf{r}_z \mathbf{h}_{t-1} + b_z$$

- $\mathbf{r}_z \mathbf{h}_{t-1}$: Learned weight matrix mixing past history.

mLSTM: No Mixing

- Good for Capacity & Speed.
- Gate calculation independent of previous hidden state:

$$i_t = w_i^T x_t + b_i$$

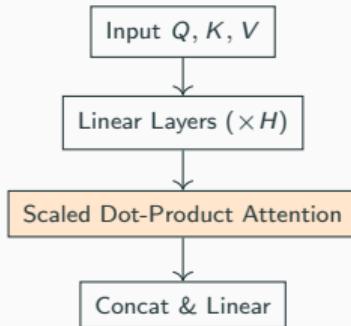
- **No** $r_i h_{t-1}$ term.

Appendix B: mLSTM Structure: Gates & Transformer Analogies

Component	mLSTM Formulation	Transformer Analogy
Key (\mathbf{k}_t)	$\frac{1}{\sqrt{d}} \mathbf{W}_k \mathbf{x}_t + \mathbf{b}_k$	Memory Address / Routing
Query (\mathbf{q}_t)	$\mathbf{W}_q \mathbf{x}_t + \mathbf{b}_q$	Retrieval Signal
Value (\mathbf{v}_t)	$\mathbf{W}_v \mathbf{x}_t + \mathbf{b}_v$	Content Information
Gate Type	Activation	Function / Effect
Input Gate (i_t)	$\exp(\tilde{i}_t)$	"Write" to Matrix Memory
Forget Gate (f_t)	$\exp(\tilde{f}_t)$	Decay old correlation

Linear Attention Connection: In mLSTM, the exponential gates act as a dynamic normalization mechanism. When the forget gate $f_t = 1$ and the input gate is active, the matrix memory $\mathbf{C}_t = \sum i_\tau \mathbf{v}_\tau \mathbf{k}_\tau^\top$ mathematically mimics **Linear Attention**.

Appendix: Transformer Multi-Head Structure



Key Concept: Instead of a single attention function, we perform H parallel projections.

Benefit for sLSTM:

- Mimics Transformer's capacity.
- Stable training via head-wise normalization.
- Efficient GPU utilization.

Appendix: From Single-head to Multi-head sLSTM

Why Multi-head?

- **Feature Diversity:** Each head tracks different aspects of the sequence.
- **Parallelism:** Independent heads allow for efficient sub-dimension processing.
- **Scaling:** Similar to Transformer's MHSA, it enhances capacity.

Feature	Standard LSTM	sLSTM (Multi-head)
Gates	Single i, f, o	$H \times (i, f, o)$
Cell State	Scalar/Vector c_t	Parallel heads $\{c_t^{(1)}, \dots, c_t^{(H)}\}$
Dependency	Sequential h_{t-1}	Head-wise parallel
Normalization	None	Exponential (exp) gate

Head Concatenation

$$h_t = \text{Concat}(h_t^{(1)}, h_t^{(2)}, \dots, h_t^{(H)})W^O$$

Note: Total hidden dimension d is split into H heads, each with $d_h = d/H$.