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Why Vision Transformers?

Transformers scaled insanely well in NLP.

Natural question: can we use the same recipe for images?
Vision was (and still is) CNN-dominated.

Earlier attention-in-vision was often “CNN + attention,” not pure
attention.

ViT’s key claim: you can use a mostly-standard Transformer encoder
on images.

The trick is to treat image patches like tokens (words).

However, accuracy isn’t everything. Clean patch features matter for
dense tasks and interpretation, and that’'s where this paper comes in.

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words: Transformers For Image Recognition At Scale", 2021



Going from Images to Tokens

Splitting
into

patches

—

Size: P x P

Start with an Image: H x W x C N patches of size P x P
Eg. 240 x 240 x 3 Eg. 225 patches of size 16 x 16

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words: Transformers For Image Recognition At Scale", 2021



Going from Images to Tokens

Flatten

N patches of size P x P N flattened vectors of size P? x C
Eg. 225 patches of size 16 x 16 Eg. 225 vectors of size 768



Going from Images to Tokens

Learnable Linear

Projection
R”'C — RP

+ Positional
Embeddings

N flattened vectors of size P? x C Sequence of (N + 1) — D dimensional vectors
Eg. 225 vectors of size 768 Eg. (225 + 1) — 768 dimensional vectors



Onward!
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Sequence of (N 4 1) — D dimensional vectors
Eg. (225 + 1) — 768 dimensional vectors
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Onward!
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Transformer Encoder
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Summing it up

Vision Transformer (ViT)

Transformer Encoder

Patch + Position
Embedding

* Extra learnable - K K
[class] embedding Linear Projection of Flattened Patches

SEE ] T
Fpeael LEELDTL.

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words: Transformers For Image Recognition At Scale", 2021



Summing it up

Transformer Encoder

Multi-Head
Attention

Embedded
Patches

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words: Transformers For Image Recognition At Scale", 2021
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Inside the Transformer Encoder

Input is a sequence: [CLS], t1,t,t3,...tN

Each layer alternates: multi-head self-attention
and an MLP block.

LayerNorm + residual connections stabilize
training.

Self-attention allows tokens to exchange
information globally, rather than only with nearby
regions as in CNNs.

The model is trained so that the CLS token
aggregates information useful for classification.

Patch tokens start as local features, but through
attention they incorporate global context while
still being associated with spatial locations.

Transformer Encoder

Multi-Head
Attention

Embedded
Patches

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words:
Transformers For Image Recognition At Scale", 2021
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CNNs vs ViTs. Inductive Bias Tradeoff

CNNs look at small neighborhoods first (like sliding filters) and
gradually build up to bigger patterns.

ViTs let every patch “talk” to every other patch using attention,
even early on. Much less “inductive bias”.

CNNs have built-in image structure (they naturally handle “nearby
pixels matter most”).

ViTs have fewer built-in assumptions, so they often need more
data / training to learn those patterns.

With enough training, ViTs can learn flexible global relationships
and become strong general-purpose backbones.

12
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What do ViT tokens represent?

A ViT produces one token per image patch (plus the CLS token).

You can think of each patch token as a feature summary of that
patch region.

Attention lets tokens share information, so patch tokens can use
context from the whole image.

These patch tokens are often reused for dense tasks
(segmentation, detection) by reshaping them back into a grid.

So ideally, patch tokens should stay meaningful and stable (they
should describe image content, not random noise).

Many downstream vision tasks reuse patch tokens directly, so the
quality and stability of these token representations matters.

Dosovitskiy et al., "An Image Is Worth 16 X 16 Words: Transformers For Image Recognition At Scale", 2021
Darcet et al., "Vision Transformers Need Registers", 2024



When patch tokens stop being “patch” tokens

e ViT patch tokens are reused as a spatial grid for dense / local tasks (segmentation,

detection, object discovery).

. Siméoni, Oriane, et al. "Localizing objects with self-supervised transformers and no
+ " labels."
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e But for some ViTs, some patch tokens become

high-norm outliers — visible artifacts in

attention/feature maps.

e These outliers corrupt local feature geometry,

hurting methods that rely on patch similarity

Figure 2: Illustration of artifacts observed in the attention maps of modern vision transformers.
We consider ViTs trained with label supervision (DeiT-III), text-supervision (OpenCLIP) or self-
supervision (DINO and DINOv2). Interestingly, all models but DINO exhibit peaky outlier values
in the attention maps. The goal of this work is to understand and mitigate this phenomenon.

(e.g., LOST object discovery).

Darcet, Timothée, et al. "Vision transformers need registers."
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The Problem: Artifacts in ViT Attention Maps

e Modern ViTs show strange artifacts in their attention maps

o Affects multiple models: DeiT-lll (supervised), OpenCLIP (text-supervised),
DINOvZ2 (self-supervised)

e Exception: Original DINO has clean attention maps

e Impact: Breaks object discovery methods like LOST

Input DeiT-11I-B DeiT-III-L  OpenCLIP-B  OpenCLIP-L DINO-B DINOv2-g

Figure 2: Illustration of artifacts observed in the attention maps of modern vision transformers.
We consider ViTs trained with label supervision (DeiT-III), text-supervision (OpenCLIP) or self-
supervision (DINO and DINOvV2). Interestingly, all models but DINO exhibit peaky outlier values
in the attention maps. The goal of this work is to understand and mitigate this phenomenon. 15

Darcet, Timothée, et al. "Vision transformers need registers."



Why this matters: local features are used everywhere

e Patch tokens are expected to represent local image content.

e Dense tasks + unsupervised grouping methods assume neighboring patches
have meaningful similarity.

e Oultliers create “spikes” that dominate dot products / similarity introduce

unstable seeds and noisy grouping.
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Paper contributions

e Characterization: artifacts correspond to high-norm outlier tokens

e Hypothesis: large, well-trained ViTs recycle redundant patch tokens as internal
compute/memory slots

e Method: add [REG] register tokens (learnable, appended after patch embed
and discarded at output)

e Results:
a. outliers disappear
b. dense/object discovery improves

c. small compute overhead (<2% FLOPs for 4 regs).

17



Characterizing the Artifacts: High-Norm Tokens

e Key observation: Artifact patches have ~10x higher L2 norm at output

e Bimodal distribution: Most tokens have norm 0-100, outliers have norm >150
e Proportion: Only ~2.37% of tokens are outliers

e Detection method: Simple threshold on token norm (e.g., norm > 150)

input image DINO norms DINOv2 norms o DINO norms DINOv2 norms
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Figure 3: Comparison of local feature norms for DINO ViT-B/16 and DINOv2 ViT-g/14. We ob-
serve that DINOv2 has a few outlier patches, whereas DINO does not present these artifacts. For
DINOv2, although most patch tokens have a norm between 0 and 100, a small proportion of tokens
have a very high norm. We measure the proportion of tokens with norm larger than 150 at 2.37%.

Darcet, Timothée, et al. "Vision transformers need registers."
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When and Where Do Artifacts Appear?

e During training: Outliers appear after ~1/3 of training

e Network depth: Emerge around middle layers (layer 15 of 40)
e Model size: Only in large models (ViT-L, ViT-H, ViT-g)

e Spatial location: Appear in redundant, low-information patches (similar to neighbors)

L 10-1
- 102
103
, 1074

112k 312k 512k TSBLHGJg
layer pretrain iter arch

ion
proportion

proportion
proport

(a) Norms along layers. (b) Norms along iterations. (c¢) Norms across model size.

Figure 4: Illustration of several properties of outlier tokens in the 40-layer DINOv2 ViT-g model.
(a): Distribution of output token norms along layers. (b): Distribution of norms along training
iterations. (c): Distribution of norms for different model sizes. The outliers appear around the
middle of the model during training; they appear with models larger than and including ViT-Large.
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Outlier tokens carry less local information

e Local smoothness breaks: artifact patches have lower cosine similarity to their 4

neighbors than normal patches — they don’t behave like “local patch” features.

e Probing confirms it: outlier tokens perform much worse at
a. position prediction

b. patch reconstruction — they encode less local patch info.

—— normal patches

artifact patches wie R .
E position prediction reconstruction

top-1 acc avg. distance | L2 error |

— fiormal 41.7 0.79 18.38

0.0 0.5 1.0 outlier 22.8 5.09 25.23

(a) Cosine similarity to neighbors. (b) Linear probing for local information.

Figure 5: (a): Distribution of cosine similarity between input patches and their 4 neighbors. We
plot separately artifact patches (norm of the output token over 150) and normal patches. (b): Local
information probing on normal and outlier patch tokens. We train two models: one for predicting
position, and one for reconstructing the input patch. Outlier tokens have much lower scores than the
other tokens, suggesting they are storing less local patch information.

Darcet, Timothée, et al. "Vision transformers need registers." 20



The Solution: Register Tokens

Hypothesis: Why Do Artifacts Appear?

e The model needs internal computation space

e Large models learn to recognize redundant patches

e These tokens get recycled to store, process, and retrieve global information
e Problem: This discards local patch information needed for dense tasks

e Solution: Give the model dedicated tokens for this purpose!

21



Method: Adding Register Tokens

e Simple architectural change:
e Add N learnable tokens after patch embedding (like [CLS] token)
e Input: [CLS] + [REG1] + [REG2] + ... + [REGN] + patch tokens

e Output: Discard register tokens, use only [CLS] and patches

e Implementation: Authors use 4 register tokens in experiments

output

IIIIIIIIIIUDDD

7 \—/

input patches

Figure 6: Illustration of the proposed remediation and resulting model. We add N additional learn-
able input tokens (depicted in yellow), that the model can use as registers. At the output of the
model, only the patch tokens and [CLS] tokens are used, both during training and inference.
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Cost of adding registers is small

e Adds tokens — increases FLOPs/params, but params negligible.

e For N =4 registers (used in most experiments), FLOPs increase is < 2%.

increase

0090000000000

0 4 8 12 16
number of [reg] tokens

Figure 12: Increase in model parameter and FLOP count when adding different numbers of registers.
Adding registers can increase model FLOP count by up to 6% for 16 registers. However, in the more
common case of using 4 registers, that we use in most of our experiments, this increase is below 2%.
In all cases, the increase in model parameters is negligible.

Darcet, Timothée, et al. "Vision transformers need registers."
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Experiments

Training Algorithms and Data used

1. OpenCLIP [1] (2021)

o Represents multimodal / text-supervised training.
2. DEIT-lll [2] (ECCV, 2022)

o Represents label-supervised training.
3. DINOv2 [3] (2023)

o Represents self-supervised learning

[1] llharco, Gabriel, Mitchell Wortsman, Ross Wightman, Cade Gordon, et al. OpenCLIP. 2021.
[2] Touvron, Hugo, Matthieu Cord, and Hervé Jégou. DeiT Ill: Revenge of the ViT. European Conference on Computer Vision (ECCV), 2022. 24
[3] Oquab, Maxime, Timothée Darcet, Thibaut Lavril, et al. DINOv2: Learning Robust Visual Features without Supervision. 2023.



Experiments

Training Algorithms and Data used

1. OpenCLIP

a. Trains models by aligning images with text labels using CLIP-style image—text
contrastive learning.

b. Uses licensed Shutterstock-based image—text dataset
c. Uses ViT-B/16 image encoder with patch size 16x16
I. embedding dimension: 768
ii. transformer layers: 12
lii. attention heads: 12
d. Represents multimodal / text-supervised training.
2. DEIT-IN
3. DINOv2
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Experiments

Training Algorithms and Data used

1. OpenCLIP
2. DEIT-I
a. Uses labeled images for training (standard classification setup)
b. Trained on ImageNet-22k dataset
c. Uses base VIiT architecture (ViT-B configuration) with patch size 32x32
I. embedding dimension: 768
ii. transformer layers: 12
iii. attention heads: 12
d. Represents label-supervised training.
3. DINOv2

26



Experiments

Training Algorithms and Data used

1. OpenCLIP
2. DEIT-lI
3. DINOv2

a. Learns visual features without labels based on DINO self-supervised framework.
b. Trained on ImageNet-22k.
c. Uses larger ViT-L configuration.
I. embedding dimension: 1024
ii. transformer layers: 24
lii. attention heads: 16

d. Represents self-supervised learning.

27



Experiments

Overview

a B 0 Db =

Do register tokens remove artifacts?

Do they hurt performance?

How many registers are optimal?

Do they help downstream tasks like object discovery?

What do registers actually learn?

28



Results

Exp 1: Norm Outliers Disappearance

DINOv2 DINOv2+reg OpenCLIP OpenCLIP+reg DeiTlI DeiT-lll+reg

Figure 7: Effect of register tokens on the distribution of output norms on DINOv2, OpenCLIP and
DeiT-III. Using register tokens effectively removes the norm outliers that were present previously.

e Without registers: some tokens have huge values (bad).
e \With registers: distribution becomes smooth.

e Reason: registers absorb excess information.

29



Results

Exp 1: Reasoning

e How often does this position become a high-norm outlier across many images?

- 0.4
=10.2

Figure 10: Feature norms along locations: proportion of tokens with norm larger than the cutoff
value at a given location. Left: official DINOv2 model (no antialiasing), right: our models (with
antialiasing). At some positions, more than 20% of tokens have a high norm.

e Inference: certain columns systematically produce outliers.
o Real objects don’t naturally appear in stripes.

o Generally the subject is in the middle of image 30



Results

Exp 1: Reasoning

Figure 10: Feature norms along locations: proportion of tokens with norm larger than the cutoff
value at a given location. Left: official DINOv2 model (no antialiasing), right: our models (with
antialiasing). At some positions, more than 20% of tokens have a high norm.

e Why does stripes happen?
o Positional embedding interpolation.
o When image resolution or token count may change, no. of patches received
changes so positional embedding must be interpolated accordingly

o Since we use bicubic interpolation without antialiasing strips appears

31



Results

Exp 1: Proof for reason
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Figure 11: Propagating unit gradients through a bicubic interpolation (16 x 16 — 7 x 7) without
antialiasing. We observe a striping pattern similar to the one of Fig. @'(left).
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Results

Exp 1: Reasoning

-04
~10.2
} 0.1 " 0.2

Figure 10: Feature norms along locations: proportion of tokens with norm larger than the cutoff
value at a given location. Left: official DINOv2 model (no antialiasing), right: our models (with
antialiasing). At some positions, more than 20% of tokens have a high norm.

e S0, antialiasing solves the problem of stripes, fixing the artifacts

e Why outliers appear near borders?

33



Results

Exp 1: Reasoning

Figure 10: Feature norms along locations: proportion of tokens with norm larger than the cutoff
value at a given location. Left: official DINOv2 model (no antialiasing), right: our models (with
antialiasing). At some positions, more than 20% of tokens have a high norm.

e Why outliers appear near borders?

o Transformer needs somewhere to store: global context, aggregated information.
o Since no dedicated memory slots exist, model hijacks certain patch tokens.
o Preferably the less important ones which are usually the background patches

34



Results

Exp 1: Reasoning

CLS patch CLS reg 0 reg. 1 reg 2 reg 3 patch
type type

(a) DINOV2 - no register (b) DINOV2 - 4 registers

Figure 15: Distribution of token norms for a DINOv2 model without (left) and with (right) 4 regis-
ters. Introducing registers entirely negates the high-norm outliers among the patch tokens.

e Without registers:

o patch tokens contain extreme norms.
e With registers:

o patch tokens clean.

o registers contain high norms.
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Results

Exp 2: Performance Regression Check

ImageNet ADE20k NYUd
Top-1 mloU rmse |

DeiT-11I 84.7 38.9 0.511
DeiT-11I+reg 84.7 39.1 0.512

OpenCLIP 78.2 26.6 0.702 ImageNet
OpenCLIP+reg 78.1 26.7 0.661 Top-1

DINOv2 84.3 46.6 0.378 OpenCLIP 59.9
DINOv2+reg 84.8 47.9 0.366 OpenCLIP+reg 60.1

(a) Linear evaluation with frozen features. (b) Zero-shot classification.

Table 2: Evaluation of downstream performance of the models that we trained, with and without
registers. We consider linear probing of frozen features for all three models, and zero-shot evaluation
for the OpenCLIP model. We see that using register not only does not degrade performance, but even
improves it by a slight margin in some cases.

e Performance stays same or slightly improves.

e So, registers DO NOT harm performance.
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Results

Exp 3: Ablating number of register tokens

2 [reqg] [reqg] 8 [reqg]

[reqg] [reg]

ImageNet Average of segmentation tasks Average of depth tasks
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Figure 8: Ablation of the the number of register tokens used with a DINOv2 model. (top): qualita-
tive visualization of artifacts appearing as a function of number of registers. (bottom): performance
on three tasks (ImageNet, ADE-20k and NYUd) as a function of number of registers used. While
one register is sufficient to remove artefacts, using more leads to improved downstream performance.
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Results

Exp 3: Ablating number of register tokens

ImageNet Average of segmentation tasks Average of depth tasks
84.8 285
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Figure 8: Ablation of the the number of register tokens used with a DINOv2 model. (top): qualita-
tive visualization of artifacts appearing as a function of number of registers. (bottom): performance
on three tasks (ImageNet, ADE-20k and NYUd) as a function of number of registers used. While
one register is sufficient to remove artefacts, using more leads to improved downstream performance.

e Just ONE register removes artifacts
e Classification improves with more registers
e More registers sometimes improve dense tasks
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Results

Exp 3: Ablating number of register tokens

increase

N sasssssanaaaaal
0 4 8 12 16
number of [reg] tokens

Figure 12: Increase in model parameter and FLOP count when adding different numbers of registers.
Adding registers can increase model FLOP count by up to 6% for 16 registers. However, in the more
common case of using 4 registers, that we use in most of our experiments, this increase is below 2%.
In all cases, the increase in model parameters is negligible.

e parameter increase = negligible.
e FLOPs increase small.
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Results

Exp 4: Do they help in object discovery?

What is object discovery?

finding objects in images without labels

40



Results

Exp 4: Do they help in object discovery?

VOC 2007 VOC2012 COCO 20k

DeiT-111 : 13.1 10.7
DeiT-11I+reg 27. 32,7 25:1

OpenCLIP : 44.3 31.0
OpenCLIP+reg ; 42.0 279

DINOv2 ; 40.2 26.9
DINOv2+reg : 60.0 42.0

Table 3: Unsupervised Object Discovery using LOST (Siméoni et al., 2021) on models with and
without registers. We evaluated three types of models trained with various amounts of supervision
on VOC 2007, 2012 and COCO. We measure performance using corloc. We observe that adding
register tokens makes all models significantly more viable for usage in object discovery.
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Results

Exp 4: Do they help in object discovery?

DeiT-III OpenCLIP DINOv2
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Figure 13: Illustration of the intermediate computations in the LOST algorithm for all models.
Adding registers drastically improves the look of all intermediate steps for DeiT-III and DINOv2.
The difference is less striking for the OpenCLIP model.

Darcet, Timothée, et al. "Vision transformers need registers."

e Without registers:
o some patch tokens become high-norm outliers which distort similarity computation.
o So dot products become noisy and seed selection becomes unstable.
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Results

Exp 4: Do they help in object discovery?

DeiT-III OpenCLIP DINOv2
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Figure 13: Illustration of the intermediate computations in the LOST algorithm for all models.
Adding registers drastically improves the look of all intermediate steps for DeiT-III and DINOv2.
The difference is less striking for the OpenCLIP model.

Darcet, Timothée, et al. "Vision transformers need registers."

e Registers fix this by absorbing global information and cleaning patch representations.
e So, LOST dramatically improves.
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Results

Exp 4: Do they help in object discovery?

DeiT-III OpenCLIP DINOv2
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Figure 13: Illustration of the intermediate computations in the LOST algorithm for all models.
Adding registers drastically improves the look of all intermediate steps for DeiT-III and DINOv2.
The difference is less striking for the OpenCLIP model.

Darcet, Timothée, et al. "Vision transformers need registers."

e In OpenCLIP, value projection filters outliers automatically and local feature geometry
already stable.
e So, registers give smaller improvement in LOST score
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Results

Exp 5: What Do Registers Learn?

1. Registers behave differently.
o Some attend to specific objects
o Some focus on different regions
2. But nothing has been enforced

Figure 9: Comparison of the attention maps of the [CLS] and register tokens. Register tokens
sometimes attend to different parts of the feature map, similarly to slot attention (Locatello et al.}
2020). This behaviour was never required from the model, and emerged naturally from training.

Darcet, Timothée, et al. "Vision transformers need registers."
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Take-home: registers “decouple” global scratch space from
local patches

e Artifacts = high-norm outlier patch tokens (measurable, bimodal).

e Hypothesis: large ViTs reuse redundant patches as compute/memory slots.

e Registers give dedicated slots — outliers move into registers — patch grid becomes
clean.

e Practical outcome: smoother local features — better dense/object discovery; minimal

compute cost.
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Paper Strengths

e Simple architectural change, broadly applicable

e Strong interpretability story: connects artifacts «» norms < behaviour

e Empirical validation across multiple training paradigms (supervised, text-supervised,
self-supervised)

e Clear cost/benefit tradeoff (4 regs: <2% FLOPSs)
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Limitations

e Root cause not fully pinned down: authors note they couldn’t fully determine which
training aspects trigger artifacts.

e Not all benefits are equally strong: OpenCLIP improvements can be smaller
because value projection may filter outliers.

e Not equally efficient on models: Effect on OpenCLIP is much less than other models.

e Requires to retrain the model from scratch with additional register tokens.
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Questions From Us

e Root cause: What exactly triggers outlier tokens?
a. Is it model size, training length, augmentation, positional embedding interpolation,
optimizer dynamics, or data bias?
b. The paper shows correlations, but not a causal diagnosis.
e \What do registers actually represent?
a. Are they “global summary,” background, positional anchors, or something like
scratchpad memory?
b. Do different registers specialize (and if yes, why)?

e Why does outliers appears in Q and K spaces, but not in V space?
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Suggestion For Future Work

e Adaptive / learned number of registers:

a. Instead of fixed N, use a mechanism to allocate registers dynamically (e.g.,
gating, token pruning + register insertion) based on image complexity or outlier
score.

e Regularize registers for diversity / interpretability:

a. Encourage specialization: orthogonality/entropy regularizers, diversity loss, or

encourage each register to attend to different regions.

b. Then show “register i consistently captures X".
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