
Group Equivariant Convolutional Networks

Armin Saghafian, Karen Shen, Masih Beigi Rizi

Feb 9 2026

1

Benefits of Invariance: Motivating Example 1

• There are variations that we don’t care about:

2[*] https://www.augmentedstartups.com/blog/convolutional-neural-networks-cnn-in-self-driving-cars

Benefits of Invariance: Motivating Example 2

• There are variations that we don’t care about:

● One possible solution:

3[*] https://uvagedl.github.io/

CNNs Can Learn Invariance But…

• Augmenting the dataset is helpful, however major issues remain:
– Learning capacity of the model is used up
– Feature representations become repetitive
– There’s no guarantee of invariance

4[*] https://distill.pub/2020/circuits/equivariance/

Intuition: Let’s Exploit the Symmetry in the Data

5[*] https://twitter.com/evoluchico/status/1503307804043583488

CNNs Already Exploit Translation

• Convolutional weight sharing → translation symmetry

6
[*] https://fabianfuchsml.github.io/equivariance1of2/
[**] https://github.com/vdumoulin/conv_arithmetic

But, CNNs Can Do Better

7[*] https://github.com/QUVA-Lab/e2cnn

Generalize CNNs To Exploit Larger Symmetry Groups

● CNNs handle translation
● Improve CNNs to handle rotations and reflections

8[*] https://github.com/QUVA-Lab/e2cnn

CNN’s Status-Quo: Unstructured Representations

9

● Minimal internal structure in representation spaces of standard deep neural networks
● Feature maps are list of scalar numbers
● input = a grid of values => feature map = grid of abstracted representation of values

● CNNs operate in the G-Space of 2D translation group (Z2)
○ Convolution operation -> Sharing weight across the Z2 group

● Main idea:
○ Choose a more advanced symmetry group
○ Lift the input to contain “pose” vectors to be transformed by the group elements
○ Use “G-Convolution Layers” to preserve the input structure

The Paradigm Shift: Linear G-Space

10

Equivariance: A Must for the G-Convolution Layers

11

● Layer Φ should be structure preserving
● This can be achieved by Φ being equivariant:

○ Transform -> Φ = Φ -> Transform
● T and T’ can be different but below should hold:

○ As long as the T is a linear operator
○ T (gh) = T(g)T(h)

(T
g
 and T’

g
 represent the same group action,

but can be different physical operations)

• Symmetry: Transformation leaving an object invariant
• Example:

Symmetry Groups

12

g

g+h h

• p4: rotation + translation on a grid, p4m: rotation + translation + reflection on a grid
• m ∈ {0, 1}, 0 ≤ r < 4 and (u, v) ∈ Z2

p4 and p4m Groups

13

• Visualizations use r as rotation and m as reflection:

p4 and p4m Visualized

14[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

• Model stacks of feature maps in a conventional CNN as a domain bounded function

• Use below notation for transformations on feature maps:

x

x-g

look-up

Functions on Groups: Base Terminology

15

Input (p, q)
K-dim f(p, q)

• Transformation of a structured object (T):

T T

Functions on Groups: p4 Visualization

16[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

• Again, first transform and then follow the red line:

Functions on Groups: pm4 Visualization

17

T

Quick Recap (EQUIVARIANCE VS. INVARIANCE)

18

● Equivariance is preferred in intermediate layers because it preserves relative spatial
information.

Invariance

● The output remains identical regardless
of transformation.

Equivariance

● The output transforms in the same way
as the input. (e.g., Convolution).

• Formulation of Convnet at:
– layer
– Input feature map
– Filter (or Kernel)

Properties of CNNs

19

● Correlation is an equivariant map for the translation group

20
[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Properties of CNNs (translation)

21
[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Properties of CNNs (translation)

Weight sharing (using the same filter at every pixel) is what provides translation equivariance. However, standard filters are not shared

across rotations.

22
[*] https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

Properties of CNNs (translation)

23
[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Properties of CNNs (translation)

● Correlation is not equivariant map for the translation group

In a standard CNN, the filter (kernel) is fixed. Imagine you have a filter that detects
horizontal edges.

● If you give it an image of a horizontal line, it lights up.
● If you rotate the image 90 degrees, that line is now vertical.
● Since your filter is still looking for horizontal edges, it now detects nothing.

24

Properties of CNNs (rotation)

● How did we handle this before?

 If an ordinary CNN learns rotated copies of the same filter, the stack of feature maps is
equivariant, although individual feature maps are not.

25

Properties of CNNs (rotation)

26

Properties of CNNs (rotation)

Static Filters

In standard CNNs, filters are fixed in orientation. If the image

rotates, the filter response changes completely.

A horizontal edge detector won't detect a vertical edge.

The network must learn redundant rotated filters.

Sample complexity increases linearly with pose variety.

[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

• Using the substitution:
• This substitution is a Translation function

Equivariance Properties of CNNs

27

G-CNNs

● CNNs Inherently exploit translation symmetry. This is a desirable trait.

● Now how do we generalize this to larger symmetry groups (e.g., rotations).

● The network is built from layers that are internally equivariant to the group.

What we need to do:

➢ Standard CNN: A feature map is a 2D grid where each value tells you where a feature (like an eye) is

located in the image.

➢ G-CNN: A feature map is a 3D stack defined on a group (like). Each layer in the stack tells you not just

where a feature is, but also in which orientation (0°, 90°, 180°, or 270°) it was found.

28

Step 1: The Lifting Convolution

29

The first layer must "lift" the input from the

2D grid into the Group space .

Input: 2D Image

Output: Group Function

The filter is rotated and applied to the

image repeatedly.

30
[*] https://medium.com/data-science/group-equivariant-self-attention-19e47f0b786e

The difference

31

➢ Standard Convolution: Takes a 2D image and slides a single filter across it to produce a

single 2D output.

➢ Lifting Convolution: Takes the 2D image but applies the filter in multiple orientations

(e.g., rotated at 0°, 90°, 180°, and 270°).

Step 2: Hidden Layers (G to G)

32

Once data is on the group manifold, we must process it with layers that stay

on the group.

Input: Function on the group .

Operator: Group-to-Group Correlation.

Filter: Also defined on the group .

Outcome: Hierarchical features that understand relative orientation.

The difference

33

Standard CNN

Weights shared only over spatial translations .

G-CNN (p4m)

Weights shared over translations AND 8 orientations.

Instead of just looking at neighboring pixels (left, right, up, down), the filter now looks at neighboring

orientations too. It asks: "Is there a vertical edge here AND a horizontal edge in the layer representing 90

degrees?"

By doing this, the network can learn complex patterns (like a corner or a face) regardless of how they are

rotated, because the filter itself "rotates" through the stack as it convolved. This ensures that the rotational

information is preserved all the way to the final layers of the network.

Massive Weight Sharing Benefits

34

1
4

Standard CNN: Shares weights across (x, y).

G-CNN: Shares weights across (x, y) AND all rotations r and mirror.

Efficiency: Learns one detector, gets 4

(or 8) orientations for free.

Accuracy: Structural prior prevents

learning redundant features.

Step 3: Pooling in G-Space

35

Once data is on the group manifold, we must process it with layers that stay

on the group.

Input: Function on the group .

Operator: Group-to-Group Correlation.

Filter: Also defined on the group .

Outcome: Hierarchical features that understand relative orientation.

SUBGROUP POOLING

36

To produce a classification label, the network must eventually become invariant to pose. This is

done by pooling across the group channels.

Example: Pool over rotations but keep translations.

Result: A standard 2D feature map that is rotation-invariant.

Experiments: Rotated MNIST

• P4CNN: replace each conv by a p4-conv and
added max-pooling over rotations after last
conv layer

• P4CNNRotationPooling: replace each conv
by a p4-conv followed by coset max-pooling
over rotations

• → Premature invariance is undesirable in a
deep architecture

37

[*] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007) An empirical evaluation of deep architectures on problems with
many factors of variation. (ICML)
[**] Sohn, K., & Lee, H. (2012). Learning Invariant Representations with Local Transformations. (ICML)
[⁂] Schmidt, U., & Roth, S. (2012). Learning rotation-aware features: From invariant priors to equivariant descriptors. (CVPR)

Network Test Error (%)

SVM (2007)* 10.38 土 0.27

Transformation-invariant RBM (TIRBM) (2012)** 4.2

Rotation invariant C-RBM (RC-RBM) (2012)*** 3.98

Z2CNN 5.03 土 0.0020

P4CNNRotationPooling 3.21 土 0.0012

P4CNN 2.28 土 0.0004

Experiments: CIFAR-10

• Replace each conv by a
p4/p4m-conv and reduce #filters in
each layer
→ approximately invariant
#parameters

38
[*] Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for Simplicity: The All Convolutional Net. (ICLR), 2015.
[**] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Identity Mappings in Deep Residual Networks. (ECCV), 2016.

*

**

Experiments: CIFAR-10

39[*] Zagoruyko, S. and Komodakis, N. Wide Residual Networks. (BMVC), 2016.

Network G Test Error (%) Param.

Wide ResNet-26
w/ moderate data
augmentation

Z2 5.27 ~7.2M

p4m 4.19 7.2M

WRN-28-10 (2016)* 4.17 36.5M

Discussions & Implications

• p4 and p4m-conv can be used as drop-in replacement of standard conv

• G-CNNs benefit from data augmentation in the same way as convolutional networks

– As long as augmentation comes from group larger than G

• There need not be full symmetry in the dataset for G-CNNs to be beneficial

40

Strengths & Weaknesses

• From unstructured to structured representations
– Concrete example of how adding mathematical structure to a representation can improve

NN’s ability to see abstract similarities between superficially different concepts

• p4/p4m only works for discrete groups
– Convolution on continuous groups may be hard to approximate in an equivariant manner
– Full enumeration of transformations in group may not be feasible if group is large

41

Future Works

• p4/p4m only works for discrete groups
– General E(2) - Equivariant Steerable CNNs (2019)*

• G-CNNs for 3D space groups
– Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point

clouds (2018)**
– SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks (2020)***

• Hexagonal lattices with more symmetries than square grids
– HexaConv (2018)****

42

[*] Maurice Weiler, Gabriele Cesa. General E(2) - Equivariant Steerable CNNs. (NIPS), 2019.
[**] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley. Tensor field networks: Rotation- and
translation- equivariant neural networks for 3D point clouds. 2018.
[⁂] Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, Max Welling. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks.
(NIPS), 2020.
[⁑⁑] Emiel Hoogeboom, Jorn W.T. Peters, Taco S. Cohen, Max Welling. HexaConv. (ICLR), 2018.

Takeaway

By adding structure to representation space (i.e. linear G-space) and enforcing
equivariance to larger groups of symmetries (i.e. rotations, reflections), the model
shares weights across transformed features, reducing redundancy and improving

generalization

43

END

44

BACKUP

45

Slide Title

• Points

– More points

46

[*] Reference 1
[**] Reference 2
[⁂] Reference 3
[⁑⁑] Reference 4

Slide Title

• Points

– More points

47

[*] Reference 1
[**] Reference 2
[⁂] Reference 3
[⁑⁑] Reference 4

g

gh h

Slide Examples

49

Divider

50

