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Benefits of Invariance: Motivating Example 1

* There are variations that we don’t care about:
O [y LY | 72 H L
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[*] https://www.augmentedstartups.com/blog/convolutional-neural-networks-cnn-in-self-driving-cars
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Benefits of Invariance: Motivating Example 2

e There are variations that we don’t care about:
O

o2,

e One possible solution:

[*] https://uvagedl.github.io/
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CNNs Can Learn Invariance But...

* Augmenting the dataset is helpful, however major issues remain:
— Learning capacity of the model is used up
— Feature representations become repetitive
— There’s no guarantee of invariance

- Rotational Equivariance (mod 180) =)

Edge
Detectors

Line
Detectors

[*] https://distill.pub/2020/circuits/equivariance/
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Intuition: Let’s Exploit the Symmetry in the Data

v
Posterior end”™ " |

ﬁoml?side

Planes of
syrmmetry

[*] https://twitter.com/evoluchico/status/1503307804043583488
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CNNs Already Exploit Translation

* Convolutional weight sharing — translation symmetry

Features

[*] https://fabianfuchsml.github.io/equivariancelof2/
[**] https://github.com/vdumoulin/conv_arithmetic
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But, CNNs Can Do Better

feature map

[*] https://github.com/QUVA-Lab/e2cnn

stabilized view
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CNNs To Explo

Improve CNNs to handle rotations and reflections

CNNs handle translat

Generalize

[*] https://github.com/QUVA-Lab/e2cnn
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CNN's Status-Quo: Unstructured Representations

e Minimal internal structure in representation spaces of standard deep neural networks
e Feature maps are list of scalar numbers
e input = a grid of values => feature map = grid of abstracted representation of values

Input

Pooling Pooling Pooling

NN S A
4\\\‘4’[/& <A

P Pt P O L

(° S Zebra
AR,

A o 00N

z SN A

/
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SoftMax
Activation
Function

Convolution Convolution Convolution
Kernel RJLU Ré'-LU R;_LLU Flatten

Y

A

Feature Maps

| | | | |

Feature Extraction Classification Probabilistic
Distribution
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The Paradigm Shift: Linear G-Space

e CNNs operate in the G-Space of 2D translation group (Z?)
o Convolution operation -> Sharing weight across the Z? group
e Main idea:
o Choose a more advanced symmetry group
o Lift the input to contain “pose” vectors to be transformed by the group elements
o Use “G-Convolution Layers” to preserve the input structure

=) Projection layer @
> J & e =

<L

Group conv layer

/‘\‘:7 Lifting layer

The
‘Pose’
Axis

10
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Equivariance: A Must for the G-Convolution Layers

e Layer @ should be structure preserving

® This can be achieved by @ being equivariant: @
o Transform -> ® = ® -> Transform
e Tand T can be different but below should hold:

o AslongastheTis alinear operator
o T(gh)=T(g)T(h)

(Tg and T’g represent the same group action, |
but can be different physical operations) @ .

.’,E

11



Symmetry Groups

 Symmetry: Transformation leaving an object invariant
 Example:

72 = {(n,m) | n,m € Z}.

(n,m) + (p,q) = (n +p,m+q).
Closure: if g, h € Z? then g + h € Z2.
Associativity: (a +b) +c=a+ (b+ ¢).
Identity: e = (0, 0) such thata + e = a.

Inverse: fora = (n,m), —a = (—n,—m) and a + (—a) = e.

g+

12
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p4 and p4m Groups

e p4:rotation + translation on a grid, p4m: rotation + translation + reflection on a grid
e me{0,1},05r<4and(u,v) € 72

g(m7 r,u, U) —

il

(=1)™
0
0

(—1)™ cos
gifi[ =

g(r,u,v)

0

—{—1 gt~ )
Gosl5")
0

‘cos(rm/2) —sin(rm/2)
sin(rmw/2)  cos(rm/2)

0

"
v
1_

o = O
e
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p4 and p4m Visualized

* Visualizations use r as rotation and m as reflection:

m:l':"mr
= 1
BN %
73 |y = r mr:r3m-§H-=_,-7~3 2r-ﬁ:-H-j- PR, = T
- e
. -

[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

14
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Functions on Groups: Base Terminology

* Model stacks of feature maps in a conventional CNN as a domain bounded function

f . 7> - RE .

Ly f](x)

Ly f]

Input (p, q) K-dim f(p, q)
* Use below notation for transformations on feature maps:
- —1 - —1
= [fog ™ [(z) = flg™ )
/\
Ax

X-8

L,Ly = Ly,

15
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Functions on Groups: p4 Visualization

e Transformation of a structured object (T):

Rotate individually Allocation

L _

AN, W R B
vt 2 <l N EE !
S e e

[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

16
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Functions on Groups: pm4 Visualization

e Again, first transform and then follow the red line:

rm=mr rm=mr

17
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Quick Recap (EQUIVARIANCE VS. INVARIANCE)

Invariance Equivariance
® The output remains identical regardless ® The output transforms in the same way
of transformation. as the input. (e.g., Convolution).
O (L,f) =@ (1) O (Lf) =L, @(f)

e Equivariance is preferred in intermediate layers because it preserves relative spatial
information.

18
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e Formulation of Convnet at:

— layer |
— Input feature map f,(y)
— Filter (or Kernel) 1,

[f %9

[f *"](

Properties of CNNs

f:7? - RK

> > fk’yl/)k(T— y)

y€Z? k=1

> >jfk Q/JA (y — )

yEeZ? k=1

19
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Properties of CNNs (translation)

e Correlation is an equivariant map for the translation group

Lt .Y — Yy —l— {
convolution
/ \ (with arbitrary kernel) /
translation l l translation
k& —@—
convolution

[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional _cnns/

20



c
w0
(@)

i

Properties of CNNs (translation)

Weight sharing (using the same filter at every pixel) is what provides translation equivariance. However, standard filters are not shared

across rotations.

independent linear weights 1 shared kernel (convolution)l
(K, , () (K, ()
<Ka:2 ) ())
/
¢ 1//
i | / |
| -
| A L]
\ J \, J

[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional _cnns/
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Properties of CNNs (translation)

[*] https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

22
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Properties of CNNs (translation)

local connectivity

weight sharing
i I v | v
neura [ = [
activations /’ ,m = \ /I A
A\ =i ‘\_i_\ i
neural ST
connections P 7N NN
[ 70! NN NN N W - : -
input 7IVINANN ]
mpu il \ ‘
: A BN YNENNE Il / [
signal - FUR I INERY N =] - = '
- EARERARE A I 1 ] l
fully connected (MLP) locally connected

convolutional (CNN)

[*] https://maurice-weiler.gitlab.io/blog_post/cnn-book_2 conventional _cnns/



Properties of CNNs (rotation)

e Correlation is not equivariant map for the translation group

In a standard CNN, the filter (kernel) is fixed. Imagine you have a filter that detects
horizontal edges.

e If you give it an image of a horizontal line, it lights up.
e If you rotate the image 90 degrees, that line is now vertical.
e Since your filter is still looking for horizontal edges, it now detects nothing.

24
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Properties of CNNs (rotation)

e How did we handle this before?
L f]x ¥)(x) = Ly [f % [Lr—19]|() (9)

If an ordinary CNN learns rotated copies of the same filter, the stack of feature maps is
equivariant, although individual feature maps are not.

25
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Properties of CNNs (rotation)

Static Filters

In standard CNNs, filters are fixed in orientation. If the image

rotates, the filter response changes completely.
> Ahorizontal edge detector won't detect a vertical edge.
> The network must learn redundant rotated filters.

> Sample complexity increases linearly with pose variety.

[*] https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

Structured input:
(32, 32]

Layer 1: P4ConvZ2 7 ki,
[3, 3] filter, zero pad ﬂ
+ normalization N J

Structured data:

[4, 32, 32]

Layer 2: PAConvP4 / \
(4, 3, 3] filter, zero pad

+ normalization \ /
Structured data:

(4, 32, 32)

26
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Equivariance Properties of CNNs

* Using the substitution: ¢y —> Y +
* This substitution is a Translation function Lt

Z}‘ (y — )¢y — =)
-—E:f Y(y +t— )
—Zf JW(y — (z—1))

= [Lt[f *xPl](z).

(8)

27
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G-CNNs

e CNNs Inherently exploit translation symmetry. This is a desirable trait.
e Now how do we generalize this to larger symmetry groups (e.g., rotations).

e The network is built from layers that are internally equivariant to the group.

What we need to do:

> Standard CNN: A feature map is a 2D grid where each value tells you where a feature (like an eye) is
located in the image.

> G-CNN: A feature map is a 3D stack defined on a group (like p4). Each layer in the stack tells you not just

where a feature is, but also in which orientation (0°, 90°, 180°, or 270°) it was found.

28
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Step 1: The Lifting Convolution

The first layer must "lift" the input from the
2D grid into the Group space (.
> Input: 2D Image

> Output: Group Function 7 - (7 — R¥

> Thefilter is rotated and applied to the
image repeatedly.

29
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Convolutional \ /

Kernel

[*] https://medium.com/data-science/group-equivariant-self-attention-19e47f0b786e
30



c
w0
(@)

|

The difference

Standard Convolution: Takes a 2D image and slides a single filter across it to produce a

single 2D output.

Lifting Convolution: Takes the 2D image but applies the filter in multiple orientations
(e.g., rotated at 0°, 90°, 180°, and 270°).

31
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Step 2: Hidden Layers (G to G)

Once data is on the group manifold, we must process it with layers that stay

on the group.

> Input: Function on the group G.
> Operator: Group-to-Group Correlation.
> Filter: Also defined on the group G.

> Outcome: Hierarchical features that understand relative orientation.

32
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The difference

Standard CNN G-CNN (p4m)

Weights shared only over spatial translations . ( u,v ) Weights shared over translations AND 8 orientations.

Instead of just looking at neighboring pixels (left, right, up, down), the filter now looks at neighboring
orientations too. It asks: "Is there a vertical edge here AND a horizontal edge in the layer representing 90

degrees?"

By doing this, the network can learn complex patterns (like a corner or a face) regardless of how they are
rotated, because the filter itself "rotates" through the stack as it convolved. This ensures that the rotational

information is preserved all the way to the final layers of the network.

33
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Massive Weight Sharing Benefits

Standard CNN: Shares weights across (X, V).

G-CNN: Shares weights across (x, y) AND all rotations r and mirror.

Efficiency: Learns one detector, gets 4 Accuracy: Structural prior prevents
(or 8) orientations for free. learning redundant features.

34
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Step 3: Pooling in G-Space

Once data is on the group manifold, we must process it with layers that stay

on the group.

> Input: Function on the group G.
> Operator: Group-to-Group Correlation.
> Filter: Also defined on the group G.

> Outcome: Hierarchical features that understand relative orientation.

35
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SUBGROUP POOLING

To produce a classification label, the network must eventually become invariant to pose. This is
done by pooling across the group channels.

> Example: Pool over rotations but keep translations.

> Result: A standard 2D feature map that is rotation-invariant.

36
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Experiments: Rotated MNIST

 PACNN: replace each conv by a p4-conv and @ Network
added max-pooling over rotations after last SVM (2007)*
conv layer
Transformation-invariant RBM (TIRBM) (2012)**

 P4CNNRotationPooling: replace each conv
by a p4-conv followed by coset max-pooling

over rotations Z2CNN

Rotation invariant C-RBM (RC-RBM) (2012)***

. . . ) , PACNNRotationPooling
e — Premature invariance is undesirable in a

deep architecture P4CNN

[*] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007) An empirical evaluation of deep architectures on problems with

many factors of variation. (ICML)
[**] Sohn, K., & Lee, H. (2012). Learning Invariant Representations with Local Transformations. (ICML)

Test Error (%)

10.38 £ 0.27
4.2

3.98

5.03 1 0.0020
3.21 £ 0.0012

2.28 1 0.0004

[#] Schmidt, U., & Roth, S. (2012). Learning rotation-aware features: From invariant priors to equivariant descriptors. (CVPR)

37
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Experiments: CIFAR-10

* Replace each conv by a
p4/p4m-conv and reduce #filters in
each layer
— approximately invariant
H#parameters

[*] Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for Simplicity: The All Convolutional Net. (ICLR), 2015.
[**] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Identity Mappings in Deep Residual Networks. (ECCV), 2016.

E DA Laloll il PR TS

Network G CIFARI0 CIFARI10+ Param.
All-CNN*| 77 9.44 8.86 1.37M
p4 8.84 7.67 1.37M

oy PAM 7.59 7.04 1.22M
ResNet44 | Z? 9.45 5.61 2.64M
pdm 6.46 4.94 2.62M

Table 2. Comparison of conventional (i.e. Z?), p4 and p4m CNNs
on CIFAR10 and augmented CIFAR10+. Test set error rates and

number of parameters are reported.

38
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Experiments: CIFAR-10

&l T e ARED

Network G Test Error (%) | Param.
Wide ResNet-26 Z2 5.27 ~7.2M
w/ moderate data

augmentation pam |4.13 7.2M
WRN-28-10 (2016)* 4.17 36.5M

[*] Zagoruyko, S. and Komodakis, N. Wide Residual Networks. (BMVC), 2016.

39



Discussions & Implications

* p4 and p4m-conv can be used as drop-in replacement of standard conv

* G-CNNs benefit from data augmentation in the same way as convolutional networks
— As long as augmentation comes from group larger than G

* There need not be full symmetry in the dataset for G-CNNs to be beneficial

40
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Strengths & Weaknesses

* From unstructured to structured representations
— Concrete example of how adding mathematical structure to a representation can improve
NN’s ability to see abstract similarities between superficially different concepts

* p4/p4m only works for discrete groups
— Convolution on continuous groups may be hard to approximate in an equivariant manner
— Full enumeration of transformations in group may not be feasible if group is large

41
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Future Works

* p4/p4m only works for discrete groups
— General E(2) - Equivariant Steerable CNNs (2019)*

 G-CNNs for 3D space groups
— Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds (2018)**

— SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks (2020)***

* Hexagonal lattices with more symmetries than square grids
— HexaConv (2018)****

[*] Maurice Weiler, Gabriele Cesa. General E(2) - Equivariant Steerable CNNs. (NIPS), 2019.

[**] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley. Tensor field networks: Rotation- and
translation- equivariant neural networks for 3D point clouds. 2018.

[#] Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, Max Welling. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks.
(NIPS), 2020.

[ ¥ %] Emiel Hoogeboom, Jorn W.T. Peters, Taco S. Cohen, Max Welling. HexaConv. (ICLR), 2018. 42



Takeaway

By adding structure to representation space (i.e. linear G-space) and enforcing
equivariance to larger groups of symmetries (i.e. rotations, reflections), the model
shares weights across transformed features, reducing redundancy and improving

generalization

43
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END
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* Points
— More points

[*] Reference 1
[**] Reference 2
[#] Reference 3

[ ¥ %]Reference 4

Slide Title
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